influxdb0.13命令
1、數據構成
INSERT cpu_load_short,host=server01,region=us-west value=0.64,value2=0.86 1434055562000000000
第一部分:“cpu_load_short,host=server01,region=us-west”
第一部分稱為key,key中包含了measurement name(類似表)和tags(tags又分為tag key和tag value,tags可以有多個)
注意:在tag value中的空格應以“\”加上空格表示,tags中的值必須是string類型,其實是起到索引的作用
第二部分:“value=0.64,value2=0.86”
第二部分稱為Field,同樣和tags的形式相同,都是鍵值對的形式,但是tags中的值必須是string類型,而Field中的值可以為Integer、float、Boolean、string類型,
若為Integer類型,則值后必須加“i”,否則該值為float類型,
比如value=23意味着這個值23是float類型,
而value=23i,意味着值23是Integer類型。
Boolean類型的值的表示方式有很多,直接寫成:t, T, true, TRUE, f, F, false或 FALSE都可以。
第三部分(可選):“1434055562000000000”
第三部分稱為Timestamp,是時間戳,如果該部分省略,則默認將當前時間的時間戳插入數據庫,否則按照用戶輸入的時間戳插入。
注意:influxdb默認使用UTC時區展示數據
2、創建及使用數據庫
CREATE DATABASE "testDB" --創建數據庫 show databases --展示所有數據庫 use testDB使用 --數據庫
3、增刪改查命令
查詢表信息
SHOW MEASUREMENTS --查詢當前數據庫中含有的表
SHOW FIELD KEYS --查看當前數據庫所有表的字段
SHOW series from pay --查看key數據
SHOW TAG KEYS FROM "pay" --查看key中tag key值
SHOW TAG VALUES FROM "pay" WITH KEY = "merId" --查看key中tag 指定key值對應的值
SHOW TAG VALUES FROM cpu WITH KEY IN ("region", "host") WHERE service = 'redis'
DROP SERIES FROM <measurement_name[,measurement_name]> WHERE <tag_key>='<tag_value>' --刪除key
SHOW CONTINUOUS QUERIES --查看連續執行命令
SHOW QUERIES --查看最后執行命令
KILL QUERY <qid> --結束命令
SHOW RETENTION POLICIES ON mydb --查看保留數據
查詢數據
SELECT * FROM /.*/ LIMIT 1 --查詢當前數據庫下所有表的第一行記錄
select * from pay order by time desc limit 2
select * from db_name."POLICIES name".measurement_name --指定查詢數據庫下數據保留中的表數據 POLICIES name數據保留
刪除數據
delete from "query" --刪除表所有數據,則表就不存在了
drop MEASUREMENT "query" --刪除表(注意會把數據保留刪除使用delete不會)
DELETE FROM cpu
DELETE FROM cpu WHERE time < '2000-01-01T00:00:00Z'
DELETE WHERE time < '2000-01-01T00:00:00Z'
DROP DATABASE “testDB” --刪除數據庫
DROP RETENTION POLICY "dbbak" ON mydb --刪除保留數據為dbbak數據
DROP SERIES from pay where tag_key='' --刪除key中的tag
SHOW SHARDS --查看數據存儲文件
DROP SHARD 1
SHOW SHARD GROUPS
SHOW SUBSCRIPTIONS
4、函數使用
mean-平均值 sum-總和 min-最小值 max-最大值 count-總個數 select * from pay order by time desc limit 2 select mean(allTime) from pay where time >= today() group by time(10m) time_zone(+8) select * from pay time_zone(+8) limit 2 SELECT sum(allTime) FROM "pay" WHERE time > now() - 10s select count(allTime) from pay where time > now() - 10m group by time(1s)
5、用戶管理命令
SHOW USERS CREATE USER jdoe WITH PASSWORD '1337password' -- Create a normal database user. CREATE USER jdoe WITH PASSWORD '1337password' WITH ALL PRIVILEGES -- Create an admin user. REVOKE ALL PRIVILEGES FROM jdoe revoke admin privileges from jdoe REVOKE READ ON mydb FROM jdoe -- revoke read privileges from jdoe on mydb SHOW GRANTS FOR jdoe -- show grants for jdoe GRANT ALL TO jdoe -- grant admin privileges GRANT READ ON mydb TO jdoe -- grant read access to a database DROP USER jdoe
6、數據保留命令
查看保留期 SHOW RETENTION POLICIES ON mydb 修改保留期 ALTER RETENTION POLICY default ON online DEFAULT 刪除保留期 DROP RETENTION POLICY <retentionpolicy> ON <database> 創建保留期 CREATE RETENTION POLICY "rp_name" ON "db_name" DURATION 30d REPLICATION 1 DEFAULT
-
- rp_name:策略名
- db_name:具體的數據庫名
- 30d:保存30天,30天之前的數據將被刪除
它具有各種時間參數,比如:h(小時),w(星期)m
minutesh
hoursd
daysw
weeksINF
infinite - REPLICATION 1:副本個數,這里填1就可以了
- DEFAULT 設為默認的策略
7、創建持續性數據處理結果 提供后續查詢
-- selects from default retention policy and writes into 6_months retention policy CREATE CONTINUOUS QUERY "10m_event_count" ON db_name BEGIN SELECT count(value) INTO "6_months".events FROM events GROUP BY time(10m) END; -- this selects from the output of one continuous query in one retention policy and outputs to another series in another retention policy CREATE CONTINUOUS QUERY "1h_event_count" ON db_name BEGIN SELECT sum(count) as count INTO "2_years".events FROM "6_months".events GROUP BY time(1h) END; -- this customizes the resample interval so the interval is queried every 10s and intervals are resampled until 2m after their start time -- when resample is used, at least one of "EVERY" or "FOR" must be used CREATE CONTINUOUS QUERY "cpu_mean" ON db_name RESAMPLE EVERY 10s FOR 2m BEGIN SELECT mean(value) INTO "cpu_mean" FROM "cpu" GROUP BY time(1m) END;DROP CONTINUOUS QUERY <cq_name> ON <database_name>
--刪除
SHOW CONTINUOUS QUERIES --查看連續執行命令
================================================
案例:根據tags查詢交易成功與失敗筆數,並保存到一個表中,每分鍾統計1分鍾內的
CREATE CONTINUOUS QUERY fail ON online
BEGIN SELECT count(allTime) as fail INTO online."default".sign_result FROM online."default".sign
where orderFlag='0'
GROUP BY time(1m)
END
CREATE CONTINUOUS QUERY success ON online
BEGIN SELECT count(allTime) as success INTO online."default".sign_result FROM online."default".sign
where orderFlag='1'
GROUP BY time(1m)
END
> select * from sign_result
name: sign_result
-----------------
time fail success
1478053740000000000 2 2
1478053800000000000 3 3
1478053860000000000 1 1
1478053920000000000 3 1
8、http api
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
1. 普通保存<br>curl -i -X POST
'http://127.0.0.1:8086/write?db=online'
--data-binary
'pay,host=1,merId=1234567890,orderFlag=1 allTime=347,ecifTime=39,icqTime=88'
<strong>2.Write points
from
a file
by
passing @filename to curl.</strong>
cpu_data.txt內容如下:
cpu_load_short,host=server02 value=0.67
cpu_load_short,host=server02,region=us-west value=0.55 1422568543702900257
cpu_load_short,direction=
in
,host=server01,region=us-west value=2.0 1422568543702900257
Write the data
in
cpu_data.txt to the mydb database with:
curl -i -XPOST
'http://localhost:8086/write?db=mydb'
--data-binary @cpu_data.txt
<strong>3.單查詢</strong><br>curl -GET
'http://localhost:8086/query?pretty=true'
--data-urlencode
"db=mydb"
--data-urlencode
"q=SELECT value FROM cpu_load_short WHERE region='us-west'"
<strong>4.多查詢</strong>
curl -G
'http://localhost:8086/query?pretty=true'
--data-urlencode
"db=mydb"
--data-urlencode
"q=SELECT value FROM cpu_load_short WHERE region='us-west';SELECT count(value) FROM cpu_load_short WHERE region='us-west'"
<strong>5.格式化time</strong>
epoch=[h,m,s,ms,u,ns]
curl -G
'http://localhost:8086/query'
--data-urlencode
"db=mydb"
--data-urlencode
"epoch=s"
--data-urlencode
"q=SELECT value FROM cpu_load_short WHERE region='us-west'"
|
注意:如果是自己程序生成時間戳,進行數據保存后,查詢時使用用select count(*) from pay進行查詢總條數時,需要確認一下influxdb數據庫時間與程序生成數據的機器時間,因為查詢不添加時間條件默認采用當前系統時間,所以就會造成數據無法做到實時入庫,數據查詢總是延后;
9、常用命令
9.1 轉化查詢結果數據time格式
precision rfc3339
> select * from sign name: sign ---------- time allTime ecifTime host icqTime icqTime1 merId orderFlag 1479880151976609227 348 0 195.203.56.35 0 0 305110099990002 null 1479880301566372997 724 0 195.203.56.35 641 0 305110048163089 0 1479880846739979577 28 0 195.203.56.35 12 0 305110099990002 0 1479881595261796657 25 0 195.203.56.35 10 0 305110099990002 0 1479881617138308807 106 0 195.203.56.35 17 0 305110099990002 0 > precision rfc3339 > select * from sign name: sign ---------- time allTime ecifTime host icqTime icqTime1 merId orderFlag 2016-11-23T05:49:11.976609227Z 348 0 195.203.56.35 0 0 305110099990002 null 2016-11-23T05:51:41.566372997Z 724 0 195.203.56.35 641 0 305110048163089 0 2016-11-23T06:00:46.739979577Z 28 0 195.203.56.35 12 0 305110099990002 0 2016-11-23T06:13:15.261796657Z 25 0 195.203.56.35 10 0 305110099990002 0 2016-11-23T06:13:37.138308807Z 106 0 195.203.56.35 17 0 305110099990002 0
9.2按時間分組統計數據(分組只能用time()注意空格)
select count(allTime) from pay where time > now() - 15h group by time(1h)
9.3按指定時間段查詢數據
select count(allTime),mean(allTime) from pay where time>='2016-11-30T16:00:00Z'and time<='2016-12-01T16:59:59Z' and orderFlag='1'
9.4腳本執行數據格式
influx -execute "select count(allTime),mean(allTime) from pay
where time>='2016-12-10T16:00:00Z'and time<='2016-12-11T16:59:59Z' and orderFlag='1' " -database 'online'; 查詢2016-12-11全天數據
格式: influx -execute "sql" -database 'databasename'
注意如果自己程序生成的時間戳作為time,則需要注意查詢出的數據時間相差8小時,所以查某一天的數據需要減掉8小時,如上