注:代碼是網上下載的,但是找不到原始出處了,侵權則刪
先寫出visual類:
class TF_visualizer(object): def __init__(self, dimension, vecs_file, metadata_file, output_path): self.dimension = dimension self.vecs_file = vecs_file self.metadata_file = metadata_file self.output_path = output_path self.vecs = [] with open(self.vecs_file, 'r') as vecs: #with open(self.vecs_file, 'rb') as vecs: for i, line in enumerate(vecs): if line != '': self.vecs.append(line) def visualize(self): # adding into projector config = projector.ProjectorConfig() placeholder = np.zeros((len(self.vecs), self.dimension)) for i, line in enumerate( self.vecs ): placeholder[i] = np.fromstring(line, sep=',') #for i,line in enumerate(self.vecs): # placeholder[i] = np.fromstring(line) embedding_var = tf.Variable(placeholder, trainable=False, name='amazon') embed = config.embeddings.add() embed.tensor_name = embedding_var.name embed.metadata_path = self.metadata_file # define the model without training sess = tf.InteractiveSession() tf.global_variables_initializer().run() saver = tf.train.Saver() saver.save(sess, os.path.join(self.output_path, 'w2x_metadata.ckpt')) writer = tf.summary.FileWriter(self.output_path, sess.graph) projector.visualize_embeddings(writer, config) sess.close() print('Run `tensorboard --logdir={0}` to run visualize result on tensorboard'.format(self.output_path))
然后調用類:
output = '/home/xx' # create a new tensor board visualizer visualizer = TF_visualizer(dimension = 768, vecs_file = os.path.join(output, 'amazon_vec.tsv'), #vecs_file = os.path.join(output, 'mnist_10k_784d_tensors.bytes'), metadata_file = os.path.join(output, 'amazon.tsv'), output_path = output) visualizer.visualize()
其中,amazon_vec.tsv中存放向量(包括詞向量,句子向量...),amazon.tsv中存放原始數據,格式為id,label,title,id和title可以隨意定義,label則為對應向量的標識,兩個文件是 一一對應的(即amazon_vec中的第一行數據對應amazon中第一行數據)
最后,命令行輸入
tensorboard --logdir=/home/xx
在瀏覽器輸入http://xx-desktop:6006即可看到可視化的數據(6006是默認端口)