主要分為:
- 純Java API連接HBase的方式;
- Spark連接HBase的方式;
- Flink連接HBase的方式;
- HBase通過Phoenix連接的方式;
第一種方式是HBase自身提供的比較原始的高效操作方式,而第二、第三則分別是Spark、Flink集成HBase的方式,最后一種是第三方插件Phoenix集成的JDBC方式,Phoenix集成的JDBC操作方式也能在Spark、Flink中調用。
注意:HBase2.1.2版本,以下代碼都是基於該版本開發的。
package com.qyb.hbase; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.hbase.HBaseConfiguration; import org.apache.hadoop.hbase.KeyValue; import org.apache.hadoop.hbase.client.Delete; import org.apache.hadoop.hbase.client.HTable; import org.apache.hadoop.hbase.client.Put; import org.apache.hadoop.hbase.client.Result; import org.apache.hadoop.hbase.client.ResultScanner; import org.apache.hadoop.hbase.client.Scan; import org.apache.hadoop.hbase.util.Bytes; /** * 在本地 C:\Windows\System32\drivers\etc目錄下文件hosts文件后添加虛擬機遠程機ip映射 * 192.168.126.128 qiaoyanbin * @author dell * */ public class HbaseJavaAPI { private static Configuration conf = null; static { conf = HBaseConfiguration.create(); conf.set("hbase.zookeeper.quorum", "192.168.126.128"); // conf.set("hbase.zookeeper.property.clientPort", "2181"); } /** * 查詢hbase所有記錄 * * @param tableName * @throws Exception */ public static void getAllRows(String tableName) throws Exception { // 新建一個數據庫管理員 HTable table = new HTable(conf, tableName); Scan scan = new Scan(); ResultScanner results = table.getScanner(scan); // 輸出查詢結果 for (Result result : results) { for (KeyValue kv : result.raw()) { // 設置C:\Windows\System32\drivers\etc的hosts,添加上虛擬機的ip和名稱對應 System.out.print("Rowkey:" + new String(kv.getRow()) + "\t"); System.out.print("時間戳:" + kv.getTimestamp() + "\t"); System.out.print("列族:" + new String(kv.getFamily()) + "\t"); System.out.print("列名:" + new String(kv.getQualifier()) + "\t"); System.out.println("值:" + new String(kv.getValue()) + "\t"); } } } /** * 添加一條數據 * * @param tableName * @param row * @param columnFamily * @param column * @param value * @throws Exception */ public static void addRow(String tableName, String row, String columnFamily, String column, String value) throws Exception { // 新建一個數據庫管理員 HTable table = new HTable(conf, tableName); Put put = new Put(Bytes.toBytes(row)); put.add(Bytes.toBytes(columnFamily), Bytes.toBytes(column), Bytes.toBytes(value)); table.put(put); } /** * 刪除一條記錄 * @param tableName * @param row * @throws Exception */ public static void delRow(String tableName, String row) throws Exception { // 新建一個數據庫管理員 HTable table = new HTable(conf, tableName); Delete delete = new Delete(Bytes.toBytes(row)); table.delete(delete); } public static void main(String[] args) { try { String tableName = "user"; /*HbaseJavaAPI.addRow(tableName, "004", "u", "name", "zhaozimo"); HbaseJavaAPI.addRow(tableName, "004", "u", "age", "23"); HbaseJavaAPI.addRow(tableName, "004", "u", "sex", "boy"); HbaseJavaAPI.addRow(tableName, "004", "u", "china", "48"); HbaseJavaAPI.addRow(tableName, "004", "u", "math", "59");*/ //HbaseJavaAPI.delRow(tableName, "003"); HbaseJavaAPI.getAllRows(tableName); } catch (Exception e) { // TODO: handle exception e.printStackTrace(); } } }
2. Spark上連接HBase
Spark上讀寫HBase主要分為新舊兩種API,另外還有批量插入HBase的,通過Phoenix操作HBase的。
2.1 spark讀寫HBase的新舊API
2.1.1 spark寫數據到HBase
使用舊版本saveAsHadoopDataset保存數據到HBase上。
/** * saveAsHadoopDataset */ def writeToHBase(): Unit ={ // 屏蔽不必要的日志顯示在終端上 Logger.getLogger("org.apache.spark").setLevel(Level.WARN) /* spark2.0以前的寫法 val conf = new SparkConf().setAppName("SparkToHBase").setMaster("local") val sc = new SparkContext(conf) */ val sparkSession = SparkSession.builder().appName("SparkToHBase").master("local[4]").getOrCreate() val sc = sparkSession.sparkContext val tableName = "test" //創建HBase配置 val hbaseConf = HBaseConfiguration.create() hbaseConf.set(HConstants.ZOOKEEPER_QUORUM, "192.168.187.201") //設置zookeeper集群,也可以通過將hbase-site.xml導入classpath,但是建議在程序里這樣設置 hbaseConf.set(HConstants.ZOOKEEPER_CLIENT_PORT, "2181") //設置zookeeper連接端口,默認2181 hbaseConf.set(TableOutputFormat.OUTPUT_TABLE, tableName) //初始化job,設置輸出格式,TableOutputFormat 是 org.apache.hadoop.hbase.mapred 包下的 val jobConf = new JobConf(hbaseConf) jobConf.setOutputFormat(classOf[TableOutputFormat]) val dataRDD = sc.makeRDD(Array("12,jack,16", "11,Lucy,15", "15,mike,17", "13,Lily,14")) val data = dataRDD.map{ item => val Array(key, name, age) = item.split(",") val rowKey = key.reverse val put = new Put(Bytes.toBytes(rowKey)) /*一個Put對象就是一行記錄,在構造方法中指定主鍵 * 所有插入的數據 須用 org.apache.hadoop.hbase.util.Bytes.toBytes 轉換 * Put.addColumn 方法接收三個參數:列族,列名,數據*/ put.addColumn(Bytes.toBytes("cf1"), Bytes.toBytes("name"), Bytes.toBytes(name)) put.addColumn(Bytes.toBytes("cf1"), Bytes.toBytes("age"), Bytes.toBytes(age)) (new ImmutableBytesWritable(), put) } //保存到HBase表 data.saveAsHadoopDataset(jobConf) sparkSession.stop() }
使用新版本saveAsNewAPIHadoopDataset保存數據到HBase上
a.txt文件內容為:
100,hello,20 101,nice,24 102,beautiful,26
/** * saveAsNewAPIHadoopDataset */ def writeToHBaseNewAPI(): Unit ={ // 屏蔽不必要的日志顯示在終端上 Logger.getLogger("org.apache.spark").setLevel(Level.WARN) val sparkSession = SparkSession.builder().appName("SparkToHBase").master("local[4]").getOrCreate() val sc = sparkSession.sparkContext val tableName = "test" val hbaseConf = HBaseConfiguration.create() hbaseConf.set(HConstants.ZOOKEEPER_QUORUM, "192.168.187.201") hbaseConf.set(HConstants.ZOOKEEPER_CLIENT_PORT, "2181") hbaseConf.set(org.apache.hadoop.hbase.mapreduce.TableOutputFormat.OUTPUT_TABLE, tableName) val jobConf = new JobConf(hbaseConf) //設置job的輸出格式 val job = Job.getInstance(jobConf) job.setOutputKeyClass(classOf[ImmutableBytesWritable]) job.setOutputValueClass(classOf[Result]) job.setOutputFormatClass(classOf[org.apache.hadoop.hbase.mapreduce.TableOutputFormat[ImmutableBytesWritable]]) val input = sc.textFile("v2120/a.txt") val data = input.map{item => val Array(key, name, age) = item.split(",") val rowKey = key.reverse val put = new Put(Bytes.toBytes(rowKey)) put.addColumn(Bytes.toBytes("cf1"), Bytes.toBytes("name"), Bytes.toBytes(name)) put.addColumn(Bytes.toBytes("cf1"), Bytes.toBytes("age"), Bytes.toBytes(age)) (new ImmutableBytesWritable, put) } //保存到HBase表 data.saveAsNewAPIHadoopDataset(job.getConfiguration) sparkSession.stop() }
2.1.2 spark從HBase讀取數據
使用newAPIHadoopRDD從hbase中讀取數據,可以通過scan過濾數據
/** * scan */ def readFromHBaseWithHBaseNewAPIScan(): Unit ={ //屏蔽不必要的日志顯示在終端上 Logger.getLogger("org.apache.spark").setLevel(Level.WARN) val sparkSession = SparkSession.builder().appName("SparkToHBase").master("local").getOrCreate() val sc = sparkSession.sparkContext val tableName = "test" val hbaseConf = HBaseConfiguration.create() hbaseConf.set(HConstants.ZOOKEEPER_QUORUM, "192.168.187.201") hbaseConf.set(HConstants.ZOOKEEPER_CLIENT_PORT, "2181") hbaseConf.set(org.apache.hadoop.hbase.mapreduce.TableInputFormat.INPUT_TABLE, tableName) val scan = new Scan() scan.addFamily(Bytes.toBytes("cf1")) val proto = ProtobufUtil.toScan(scan) val scanToString = new String(Base64.getEncoder.encode(proto.toByteArray)) hbaseConf.set(org.apache.hadoop.hbase.mapreduce.TableInputFormat.SCAN, scanToString) //讀取數據並轉化成rdd TableInputFormat是org.apache.hadoop.hbase.mapreduce包下的 val hbaseRDD = sc.newAPIHadoopRDD(hbaseConf, classOf[org.apache.hadoop.hbase.mapreduce.TableInputFormat], classOf[ImmutableBytesWritable], classOf[Result]) val dataRDD = hbaseRDD .map(x => x._2) .map{result => (result.getRow, result.getValue(Bytes.toBytes("cf1"), Bytes.toBytes("name")), result.getValue(Bytes.toBytes("cf1"), Bytes.toBytes("age"))) }.map(row => (new String(row._1), new String(row._2), new String(row._3))) .collect() .foreach(r => (println("rowKey:"+r._1 + ", name:" + r._2 + ", age:" + r._3))) }
2.2 spark利用BulkLoad往HBase批量插入數據
BulkLoad原理是先利用mapreduce在hdfs上生成相應的HFlie文件,然后再把HFile文件導入到HBase中,以此來達到高效批量插入數據。
/** * 批量插入 多列 */ def insertWithBulkLoadWithMulti(): Unit ={ val sparkSession = SparkSession.builder().appName("insertWithBulkLoad").master("local[4]").getOrCreate() val sc = sparkSession.sparkContext val tableName = "test" val hbaseConf = HBaseConfiguration.create() hbaseConf.set(HConstants.ZOOKEEPER_QUORUM, "192.168.187.201") hbaseConf.set(HConstants.ZOOKEEPER_CLIENT_PORT, "2181") hbaseConf.set(TableOutputFormat.OUTPUT_TABLE, tableName) val conn = ConnectionFactory.createConnection(hbaseConf) val admin = conn.getAdmin val table = conn.getTable(TableName.valueOf(tableName)) val job = Job.getInstance(hbaseConf) //設置job的輸出格式 job.setMapOutputKeyClass(classOf[ImmutableBytesWritable]) job.setMapOutputValueClass(classOf[KeyValue]) job.setOutputFormatClass(classOf[HFileOutputFormat2]) HFileOutputFormat2.configureIncrementalLoad(job, table, conn.getRegionLocator(TableName.valueOf(tableName))) val rdd = sc.textFile("v2120/a.txt") .map(_.split(",")) .map(x => (DigestUtils.md5Hex(x(0)).substring(0, 3) + x(0), x(1), x(2))) .sortBy(_._1) .flatMap(x => { val listBuffer = new ListBuffer[(ImmutableBytesWritable, KeyValue)] val kv1: KeyValue = new KeyValue(Bytes.toBytes(x._1), Bytes.toBytes("cf1"), Bytes.toBytes("name"), Bytes.toBytes(x._2 + "")) val kv2: KeyValue = new KeyValue(Bytes.toBytes(x._1), Bytes.toBytes("cf1"), Bytes.toBytes("age"), Bytes.toBytes(x._3 + "")) listBuffer.append((new ImmutableBytesWritable, kv2)) listBuffer.append((new ImmutableBytesWritable, kv1)) listBuffer } ) //多列的排序,要按照列名字母表大小來 isFileExist("hdfs://node1:9000/test", sc) rdd.saveAsNewAPIHadoopFile("hdfs://node1:9000/test", classOf[ImmutableBytesWritable], classOf[KeyValue], classOf[HFileOutputFormat2], job.getConfiguration) val bulkLoader = new LoadIncrementalHFiles(hbaseConf) bulkLoader.doBulkLoad(new Path("hdfs://node1:9000/test"), admin, table, conn.getRegionLocator(TableName.valueOf(tableName))) } /** * 判斷hdfs上文件是否存在,存在則刪除 */ def isFileExist(filePath: String, sc: SparkContext): Unit ={ val output = new Path(filePath) val hdfs = FileSystem.get(new URI(filePath), new Configuration) if (hdfs.exists(output)){ hdfs.delete(output, true) } }
2.3 spark利用Phoenix往HBase讀寫數據
利用Phoenix,就如同msyql等關系型數據庫的寫法,需要寫jdbc
def readFromHBaseWithPhoenix: Unit ={ //屏蔽不必要的日志顯示在終端上 Logger.getLogger("org.apache.spark").setLevel(Level.WARN) val sparkSession = SparkSession.builder().appName("SparkHBaseDataFrame").master("local[4]").getOrCreate() //表小寫,需要加雙引號,否則報錯 val dbTable = "\"test\"" //spark 讀取 phoenix 返回 DataFrame的第一種方式 val rdf = sparkSession.read .format("jdbc") .option("driver", "org.apache.phoenix.jdbc.PhoenixDriver") .option("url", "jdbc:phoenix:192.168.187.201:2181") .option("dbtable", dbTable) .load() val rdfList = rdf.collect() for (i <- rdfList){ println(i.getString(0) + " " + i.getString(1) + " " + i.getString(2)) } rdf.printSchema() //spark 讀取 phoenix 返回 DataFrame的第二種方式 val df = sparkSession.read .format("org.apache.phoenix.spark") .options(Map("table" -> dbTable, "zkUrl" -> "192.168.187.201:2181")) .load() df.printSchema() val dfList = df.collect() for (i <- dfList){ println(i.getString(0) + " " + i.getString(1) + " " + i.getString(2)) } //spark DataFrame 寫入 phoenix,需要先建好表 /*df.write .format("org.apache.phoenix.spark") .mode(SaveMode.Overwrite) .options(Map("table" -> "PHOENIXTESTCOPY", "zkUrl" -> "jdbc:phoenix:192.168.187.201:2181")) .save() */ sparkSession.stop() }