Spark寫入HBase(Bulk方式)


在使用Spark時經常需要把數據落入HBase中,如果使用普通的Java API,寫入會速度很慢。還好Spark提供了Bulk寫入方式的接口。那么Bulk寫入與普通寫入相比有什么優勢呢?

  • BulkLoad不會寫WAL,也不會產生flush以及split。
  • 如果我們大量調用PUT接口插入數據,可能會導致大量的GC操作。除了影響性能之外,嚴重時甚至可能會對HBase節點的穩定性造成影響。但是采用Bulk就不會有這個顧慮。
  • 過程中沒有大量的接口調用消耗性能

下面給出完整代碼:

import org.apache.hadoop.hbase.client.{Put, Result}
import org.apache.hadoop.hbase.io.ImmutableBytesWritable
import org.apache.hadoop.hbase.mapreduce.TableOutputFormat
import org.apache.hadoop.hbase.util.Bytes
import org.apache.hadoop.mapreduce.Job
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.hadoop.conf.Configuration

/**
* Created by shaonian
*/
object HBaseBulk {

def main(args: Array[String]): Unit = {
  val sparkConf = new SparkConf().setMaster("local[*]").setAppName("Bulk")
  val sc = new SparkContext(sparkConf)

  val conf = new Configuration()
  conf.set("hbase.zookeeper.quorum", "zk1,zk2,zk3")
  conf.set("hbase.zookeeper.property.clientPort", "2181")
  conf.set(TableOutputFormat.OUTPUT_TABLE, "bulktest")
  val job = Job.getInstance(conf)
  job.setOutputKeyClass(classOf[ImmutableBytesWritable])
  job.setOutputValueClass(classOf[Result])
  job.setOutputFormatClass(classOf[TableOutputFormat[ImmutableBytesWritable]])

  val init = sc.makeRDD(Array("1,james,32", "2,lebron,30", "3,harden,28"))
  val rdd = init.map(_.split(",")).map(arr => {
   val put = new Put(Bytes.toBytes(arr(0)))
   put.addColumn(Bytes.toBytes("f"), Bytes.toBytes("name"), Bytes.toBytes(arr(1)))
   put.addColumn(Bytes.toBytes("f"), Bytes.toBytes("age"), Bytes.toBytes(arr(2).toInt))
   (new ImmutableBytesWritable, put)
  })
  rdd.saveAsNewAPIHadoopDataset(job.getConfiguration)
  sc.stop()
  }


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM