激活函數:Swish: a Self-Gated Activation Function


今天看到google brain 關於激活函數在2017年提出了一個新的Swish 激活函數。

叫swish,地址:https://arxiv.org/abs/1710.05941v1 

pytorch里是這樣的:

def relu_fn(x):

    """ Swish activation function """

    return x * torch.sigmoid(x)

 Swish, which is simply f(x) = x ·sigmoid(x). Our experiments show that Swish tends to work better than ReLU on deeper models across a number of challenging datasets.

For example, simply replacing ReLUs with Swish units improves top-1 classification accuracy on ImageNet by0.9% for MobileNASNetA and 0.6% for Inception-ResNet-v2.

The simplicity of Swish and its similarity to ReLU make it easy for practitioners to replace ReLUs with Swish units in any neural network.

他人的介紹:

https://blog.csdn.net/wydbyxr/article/details/84615522

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM