『深度概念』度量學習中損失函數的學習與深入理解
0. 概念簡介
度量學習(Metric Learning),也稱距離度量學習(Distance Metric Learning,DML) 屬於機器學習的一種。其本質就是相似度的學習,也可以認為距離學習。因為在一定條件下,相似度和距離可以相互轉換。比如在空間坐標的兩條向量,既可以用余弦相似度的大小,也可以使用歐式距離的遠近來衡量相似程度。
一般的度量學習包含以下步驟:
- Encoder編碼模型:用於把原始數據編碼為特征向量(重點如何訓練模型)
- 相似度判別算法:將一對特征向量進行相似度比對(重點如何計算相似度,閾值如何設定)
基於深度學習的度量學習算法中,可以分為兩個流派:
- 網絡設計派:代表孿生神經網絡(Siamese network)
- 損失改進派:代表 xx-softmax
本文介紹重點是損失改進派,是最近發展迅速,應用廣泛的方法。
在人臉識別與聲紋識別這種度量學習算法中,算法的提高主要體現在損失函數的設計上,損失函數會對整個網絡的優化有着導向性的作用。可以看到許多常用的損失函數,從傳統的softmax loss到cosface, arcface 都有這一定的提高。
無論是SphereFace、CosineFace還是ArcFace的損失函數,都是基於Softmax loss來進行修改的。
Base line | Softmax loss |
各種延伸的算法 | Triplet loss, center loss |
最新算法 | A-Softmax Loss(SphereFace), Cosine Margin Loss, Angular Margin Loss, Arcface |
1.Softmax loss
這就是softmax loss函數,
其中W和b就是分類層參數,其實就是最后學習到的分類中心,對應下圖就是每種顏色對稱軸,各種顏色點的集合就是x=encoder(row),就是分類層前面一層的輸出。
下面圖如何理解呢?倒數第二層輸出不應該是很多維嗎?
形象的理解:當做是一個球體,但是為了可視化方便,把球給壓扁了。就成為了二維的圖像。(個人理解)
如何操作?應該通過降維方法。
這樣如何完成分類的?
我們知道,softmax分類時取的是最大那類(argmax),只要目標那一類大於其他類就可以了。反映在圖上,每個點與各類中心的距離(W與b決定),距離哪個中心最近就會分成哪一類。
可以發現,Softmax loss做分類可以很好完成任務,但是如果進行相似度比對就會有比較大的問題
L2距離:L2距離越小,向量相似度越高。可能同類的特征向量距離(黃色)比不同類的特征向量距離(綠色)更大
cos距離:夾角越小,cos距離越大,向量相似度越高。可能同類的特征向量夾角(黃色)比不同類的特征向量夾角(綠色)更大
總結來說:
- Softmax訓練的深度特征,會把整個超空間或者超球,按照分類個數進行划分,保證類別是可分的,這一點對多分類任務如MNIST和ImageNet非常合適,因為測試類別必定在訓練類別中。
- 但Softmax並不要求類內緊湊和類間分離,這一點非常不適合人臉識別任務,因為訓練集的1W人數,相對測試集整個世界70億人類來說,非常微不足道,而我們不可能拿到所有人的訓練樣本,更過分的是,一般我們還要求訓練集和測試集不重疊。
- 所以需要改造Softmax,除了保證可分性外,還要做到特征向量類內盡可能緊湊,類間盡可能分離。
這種方式只考慮了能否正確分類,卻沒有考慮類間距離。所以提出了center loss 損失函數。(paper)
2. Center loss
center loss 考慮到不僅僅是分類要對,而且要求類間有一定的距離。上面的公式中
3. Triplet Loss
三元組損失函數,三元組由Anchor, Negative, Positive這三個組成。從上圖可以看到,一開始Anchor離Positive比較遠,我們想讓Anchor和Positive盡量的靠近(同類距離),Anchor和Negative盡量的遠離(類間距離)。
表達式左邊為同類距離 ,右邊為不同的類之間的距離。使用梯度下降法優化的過程就是讓類內距離不斷下降,類間距離不斷提升,這樣損失函數才能不斷地縮小。
上面的幾個算法都是比較傳統老舊的,下面說一下比較新的算法。
4. L-softmax
前面Softmax loss函數沒有考慮類間距離,Center loss函數可以使類內變得緊湊,但沒有類間可分,而Triplet loss函數比較耗時,就產生了一下新的算法。
L-softmax函數開始就做了比較精細的改動,從softmax 函數log里面的
把其中的cosθ改成了cos(mθ),
m倍θ起到了增加 margin 的效果,讓類內距離更加緊湊,同時類間距離變大。m越大類間距離就越大,因為在(0, π)區間cos函數單調遞減,m越大 cos(mθ)趨向於0。
5. SphereFace(A-Softmax)
A-softmax 是在 L-softmax 函數上做了一個很小的修改,A-softmax 在考慮 margin時添加兩個限制條件:將權重W歸一化
6. CosFace
cosface的loss函數如下:
上式中,s為超球面的半徑,m為margin。
7. ArcFace
對比arcface和cosface這兩個函數,發現arcface是直接在角度空間中最大化分類界限,而cosface是在余弦空間中最大化分類界限,這樣修改是因為角度距離比余弦距離在對角度的影響更加直接。
分類的決策邊界如下:
arcface算法流程如下:
References:
[1] https://blog.csdn.net/jningwei/article/details/80641184
[2] https://blog.csdn.net/u012505617/article/details/89355690