import numpy as np import cv2 cap = cv2.VideoCapture(0) face_cascade = cv2.CascadeClassifier("data/haarcascade_frontalface_default.xml") eye_cascade = cv2.CascadeClassifier("data/haarcascade_eye.xml") smile_cascade = cv2.CascadeClassifier("data/haarcascade_smile.xml") # img = cv2.imread("img/test1.jpg") while True: ret, img = cap.read() gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray, 1.3, 5) for (x, y, w, h) in faces: img = cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2) roi_gray = gray[y : y + h, x : x + w] roi_color = img[y : y + h, x : x + w] eyes = eye_cascade.detectMultiScale(roi_gray) for (ex, ey, ew, eh) in eyes: cv2.rectangle(roi_color, (ex, ey), (ex + ew, ey + eh), (0, 255, 0), 2) # smile = smile_cascade.detectMultiScale( # roi_gray, # scaleFactor=1.16, # minNeighbors=35, # minSize=(25, 25), # flags=cv2.CASCADE_SCALE_IMAGE, # ) # for (x2, y2, w2, h2) in smile: # cv2.rectangle(roi_color, (x2, y2), (x2 + w2, y2 + h2), (255, 0, 0), 2) # cv2.putText(img, "Smile", (x, y - 7), 3, 1.2, (0, 255, 0), 2, cv2.LINE_AA) cv2.imshow("img", img) if cv2.waitKey(1) & 0xFF == ord("q"): break
加點代碼實現實時磨皮效果,sigmaSpace值取的越大,循環次數越多運行越卡,可以只對臉部區域磨皮、但是一旦失去臉部焦點,瞬間被打回原形。
import numpy as np import cv2 cap = cv2.VideoCapture(0) face_cascade = cv2.CascadeClassifier("data/haarcascade_frontalface_default.xml") eye_cascade = cv2.CascadeClassifier("data/haarcascade_eye.xml") smile_cascade = cv2.CascadeClassifier("data/haarcascade_smile.xml") # img = cv2.imread("img/test1.jpg") while True: ret, img = cap.read() gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray, 1.3, 5) for (x, y, w, h) in faces: img = cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2) img = cv2.bilateralFilter(src=img, d=0, sigmaColor=50, sigmaSpace=5) roi_gray = gray[y : y + h, x : x + w] roi_color = img[y : y + h, x : x + w] eyes = eye_cascade.detectMultiScale(roi_gray) for (ex, ey, ew, eh) in eyes: cv2.rectangle(roi_color, (ex, ey), (ex + ew, ey + eh), (0, 255, 0), 2) # smile = smile_cascade.detectMultiScale( # roi_gray, # scaleFactor=1.16, # minNeighbors=35, # minSize=(25, 25), # flags=cv2.CASCADE_SCALE_IMAGE, # ) # for (x2, y2, w2, h2) in smile: # cv2.rectangle(roi_color, (x2, y2), (x2 + w2, y2 + h2), (255, 0, 0), 2) # cv2.putText(img, "Smile", (x, y - 7), 3, 1.2, (0, 255, 0), 2, cv2.LINE_AA) cv2.imshow("img", img) if cv2.waitKey(1) & 0xFF == ord("q"): break