個人感覺這篇文章(原文地址見文章尾)寫的排列組合問題,非常的好,而且是一步一步引出排列組合問題,我也是看了這篇文章,一步一步按照這個思路來,最后會了自己的一套排列組合
也因此在算法競賽中,兩次用到了,成功解決了問題.
第一個問題:
首先,先讓我們來看第一個問題, 有1,2,3,4這4個數字.可以重復的在里面選4次,問能得到多少種結果.easy
1 1 1 1
1 1 1 2
1 1 1 3
1 1 1 4
1 1 2 1
1 1 2 2
.......
4 4 4 3
4 4 4 4
代碼實現其實也很簡單,大家可以看下代碼,理解一下,再自己敲一下,應該可以很快敲出來
import java.util.Stack;
public class Main {
public static Stack<Integer> stack = new Stack<Integer>();
public static void main(String[] args) {
int shu[] = {1,2,3,4};
f(shu,4,0);
}
/**
*
* @param shu 待選擇的數組
* @param targ 要選擇多少個次
* @param cur 當前選擇的是第幾次
*/
private static void f(int[] shu, int targ, int cur) {
// TODO Auto-generated method stub
if(cur == targ) {
System.out.println(stack);
return;
}
for(int i=0;i<shu.length;i++) {
stack.add(shu[i]);
f(shu, targ, cur+1);
stack.pop();
}
}
}
輸出:
[1, 1, 1, 1] [1, 1, 1, 2] [1, 1, 1, 3] [1, 1, 1, 4] [1, 1, 2, 1] [1, 1, 2, 2] ............ ............ [4, 4, 3, 2] [4, 4, 3, 3] [4, 4, 3, 4] [4, 4, 4, 1] [4, 4, 4, 2] [4, 4, 4, 3] [4, 4, 4, 4]
得到了想要的結果,此處結果又很多種4*4*4*4 = 256種結果。
第二個問題:
同理, 問題來了,這時候有點排列組合的意思了 1,2,3,4排列要的到的是
1 2 3 4 1 2 4 3 1 3 4 2 1 3 2 4 ...... 4 2 1 2 4 3 2 1
有沒有發現要的到排列的情況,這里stack里的元素是1,2,3,4都不能重復
那么我在入棧的時候加個判斷,如果比如1,已經在stack里面了,就不加進去,就不會得到 1 1 1 1 ...的情況了,就得到了排列
import java.util.Stack;
public class Main {
public static Stack<Integer> stack = new Stack<Integer>();
public static void main(String[] args) {
int shu[] = {1,2,3,4};
f(shu,4,0);
}
/**
*
* @param shu 待選擇的數組
* @param targ 要選擇多少個次
* @param cur 當前選擇的是第幾次
*/
private static void f(int[] shu, int targ, int cur) {
// TODO Auto-generated method stub
if(cur == targ) {
System.out.println(stack);
return;
}
for(int i=0;i<shu.length;i++) {
if(!stack.contains(shu[i])) {
stack.add(shu[i]);
f(shu, targ, cur+1);
stack.pop();
}
}
}
}
輸出:
[1, 2, 3, 4] [1, 2, 4, 3] [1, 3, 2, 4] [1, 3, 4, 2] [1, 4, 2, 3] [1, 4, 3, 2] [2, 1, 3, 4] [2, 1, 4, 3] [2, 3, 1, 4] [2, 3, 4, 1] [2, 4, 1, 3] [2, 4, 3, 1] [3, 1, 2, 4] [3, 1, 4, 2] [3, 2, 1, 4] [3, 2, 4, 1] [3, 4, 1, 2] [3, 4, 2, 1] [4, 1, 2, 3] [4, 1, 3, 2] [4, 2, 1, 3] [4, 2, 3, 1] [4, 3, 1, 2] [4, 3, 2, 1]
這就是想要的排列結果了.. 4 * 3 * 2 * 1 = 24種結果。
第三個問題:
那么組合問題來了,在1,2,3,4,中選3個有多少種組合方式
1 2 3 1 2 4 1 3 4 2 3 4 共4種
import java.util.Stack;
public class Main {
public static Stack<Integer> stack = new Stack<Integer>();
public static void main(String[] args) {
int shu[] = {1,2,3,4};
f(shu,3,0,0); // 從這個數組4個數中選擇三個
}
/**
*
* @param shu 元素
* @param targ 要選多少個元素
* @param has 當前有多少個元素
* @param cur 當前選到的下標
*
* 1 2 3 //開始下標到2
* 1 2 4 //然后從3開始
*/
private static void f(int[] shu, int targ, int has, int cur) {
if(has == targ) {
System.out.println(stack);
return;
}
for(int i=cur;i<shu.length;i++) {
if(!stack.contains(shu[i])) {
stack.add(shu[i]);
f(shu, targ, has+1, i);
stack.pop();
}
}
}
}
輸出:
[1, 2, 3] [1, 2, 4] [1, 3, 4] [2, 3, 4]
