Flink Backpressure指標和機制


頁面上反壓指標意義

為了判斷是否進行反壓,jobmanager會每50ms觸發100次stack traces。
Web界面中顯示阻塞在內部方法調用的stacktraces占所有的百分比。
例如,0.01,代表着100次中有一次阻塞在內部調用。
• OK: 0 <= Ratio <= 0.10
• LOW: 0.10 < Ratio <= 0.5
• HIGH: 0.5 < Ratio <= 1

出現反壓時候典型的線程堆棧阻塞情況

"offline_data_source (42/48)" #225 prio=5 os_prio=0 tid=0x00007fb379712000 nid=0xbc5ba in Object.wait() [0x00007fb32b307000]
   java.lang.Thread.State: TIMED_WAITING (on object monitor)
	at java.lang.Object.wait(Native Method)
	at org.apache.flink.runtime.io.network.buffer.LocalBufferPool.requestMemorySegment(LocalBufferPool.java:261)
	- locked <0x00000006bf00f958> (a java.util.ArrayDeque)
	at org.apache.flink.runtime.io.network.buffer.LocalBufferPool.requestBufferBuilderBlocking(LocalBufferPool.java:218)
	at org.apache.flink.runtime.io.network.api.writer.RecordWriter.requestNewBufferBuilder(RecordWriter.java:213)
	at org.apache.flink.runtime.io.network.api.writer.RecordWriter.sendToTarget(RecordWriter.java:144)
	at org.apache.flink.runtime.io.network.api.writer.RecordWriter.emit(RecordWriter.java:107)
	at org.apache.flink.streaming.runtime.io.StreamRecordWriter.emit(StreamRecordWriter.java:81)
	at org.apache.flink.streaming.runtime.io.RecordWriterOutput.pushToRecordWriter(RecordWriterOutput.java:107)
	at org.apache.flink.streaming.runtime.io.RecordWriterOutput.collect(RecordWriterOutput.java:89)
	at org.apache.flink.streaming.runtime.io.RecordWriterOutput.collect(RecordWriterOutput.java:45)
	at org.apache.flink.streaming.api.operators.AbstractStreamOperator$CountingOutput.collect(AbstractStreamOperator.java:717)
	at org.apache.flink.streaming.api.operators.AbstractStreamOperator$CountingOutput.collect(AbstractStreamOperator.java:695)
	at org.apache.flink.streaming.api.operators.StreamMap.processElement(StreamMap.java:41)
	at org.apache.flink.streaming.runtime.io.StreamInputProcessor.processInput(StreamInputProcessor.java:202)
	- locked <0x00000006bfed93f8> (a java.lang.Object)
	at org.apache.flink.streaming.runtime.tasks.OneInputStreamTask.run(OneInputStreamTask.java:105)
	at org.apache.flink.streaming.runtime.tasks.StreamTask.invoke(StreamTask.java:300)
	at org.apache.flink.runtime.taskmanager.Task.run(Task.java:711)
	at java.lang.Thread.run(Thread.java:745)

堆棧阻塞原理過程

其中RecordWriter將數據(封裝為BufferBuilder)被寫入ResultPartition下的各個subPartition里過程中會有通過memorySegment來限流阻塞的過程。
具體做法是構造BufferBuilder時候LocalBufferPool通過requestMemorySegment()方法從NetworkBufferPool中申請memorySegment。
最多會從網絡棧中申請和currentPoolSize數量相等的memorySegment對象來傳遞數據。
申請到的memorySegment都會用來處理傳遞真實數據,如果下游處理堵塞,上游netty發送數據時無法flush數據

PartitionRequestQueue.java
// Write and flush and wait until this is done before
// trying to continue with the next buffer.
channel.writeAndFlush(msg).addListener(writeListener);

進而導致無法執行回調,無法回調影響了LocalBufferPool中recycle()。無法將正在傳遞數據的memorySegment重新釋放並加入availableMemorySegments。此時用來存儲回收memorySegment對象的availableMemorySegments隊列是空的,因為所有從網絡棧中申請來的memorySegment都卡在flush數據環節,無法被recycle到availableMemorySegments隊列。

正因如此,下面代碼中會陷入死循環,一直在wait。
從而導致jobmanager每50ms觸發100次stack traces都看到operator線程阻塞在這里,然后認為該operator出現了反壓。

LocalBufferPool.java
	private MemorySegment requestMemorySegment(boolean isBlocking) throws InterruptedException, IOException {
		synchronized (availableMemorySegments) {
			returnExcessMemorySegments();

			boolean askToRecycle = owner.isPresent();

			// fill availableMemorySegments with at least one element, wait if required
			while (availableMemorySegments.isEmpty()) {
				if (isDestroyed) {
					throw new IllegalStateException("Buffer pool is destroyed.");
				}

				if (numberOfRequestedMemorySegments < currentPoolSize) {
					final MemorySegment segment = networkBufferPool.requestMemorySegment();

					if (segment != null) {
						numberOfRequestedMemorySegments++;
						return segment;
					}
				}

				if (askToRecycle) {
					owner.get().releaseMemory(1);
				}

				if (isBlocking) {
					availableMemorySegments.wait(2000);
				}
				else {
					return null;
				}
			}

			return availableMemorySegments.poll();
		}
	}

監控

可以通過flink metrics中的output buffer usage指標來確定是否下游出現了背壓,具體指標為flink_taskmanager_job_task_buffers_outPoolUsage
如下圖,如果usage打滿到100%則說明出現了嚴重的背壓情況

其它

所以出現反壓的時候,罪魁禍首往往不是flink UI上backpressure HIGH的那個operator,而是最后一個HIGH operator下游的那個operator

參考文章

Monitoring Back Pressure
數據流轉:Flink的數據抽象及數據交換過程


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM