Python之機器學習-sklearn生成隨機數據


sklearn-生成隨機數據

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties
from sklearn import datasets
%matplotlib inline
font = FontProperties(fname='/Library/Fonts/Heiti.ttc')

多標簽分類數據

X1, y1 = datasets.make_multilabel_classification(
    n_samples=1000, n_classes=4, n_features=2, random_state=1)
datasets.make_multilabel_classification()
plt.scatter(X1[:, 0], X1[:, 1], marker='*', c=y1)
plt.show()

png

生成分類數據

import matplotlib.pyplot as plt
%matplotlib inline

plt.figure(figsize=(10, 10))

plt.subplot(221)
plt.title("One informative feature, one cluster per class", fontsize=12)
X1, y1 = datasets.make_classification(n_samples=1000, random_state=1, n_features=2, n_redundant=0, n_informative=1,
                                      n_clusters_per_class=1)
plt.scatter(X1[:, 0], X1[:, 1], marker='*', c=y1)

plt.subplot(222)
plt.title("Two informative features, one cluster per class", fontsize=12)
X1, y1 = datasets.make_classification(n_samples=1000, random_state=1, n_features=2, n_redundant=0, n_informative=2,
                                      n_clusters_per_class=1)
plt.scatter(X1[:, 0], X1[:, 1], marker='*', c=y1)

plt.subplot(223)
plt.title("Two informative features, two clusters per class", fontsize=12)
X1, y1 = datasets.make_classification(
    n_samples=1000, random_state=1, n_features=2, n_redundant=0, n_informative=2)
plt.scatter(X1[:, 0], X1[:, 1], marker='*', c=y1)


plt.subplot(224)
plt.title("Multi-class, two informative features, one cluster",
          fontsize=12)
X1, y1 = datasets.make_classification(n_samples=1000, random_state=1, n_features=2, n_redundant=0, n_informative=2,
                                      n_clusters_per_class=1, n_classes=4)
plt.scatter(X1[:, 0], X1[:, 1], marker='*', c=y1)
plt.show()

png

圖像數據集

# 圖像數據集
china = datasets.load_sample_image('china.jpg')
plt.axis('off')
plt.title('中國頤和園圖像', fontproperties=font, fontsize=20)
plt.imshow(china)
plt.show()

png


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM