import cv2
import numpy as np
import matplotlib.pyplot as plt
#1、imread加載圖片
img = cv2.imread('0.jpg')
#2、將圖像轉換為灰度圖
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#
#2、高斯平滑模糊
#GaussianBlur(InputArray src, OutputArray dst, Size ksize, double sigmaX, double sigmaY=0, int borderType=BORDER_DEFAULT )
#Size ksize必須為正奇數
img = cv2.GaussianBlur(img, (3, 3), 0, 0, cv2.BORDER_DEFAULT)
#3、中值濾波(池化),消除噪音數據,medianBlur(InputArray src, OutputArray dst, int ksize) ksize必須為奇數
img = cv2.medianBlur(img, 5)
#4、利用Sobel方法可以進行sobel邊緣檢測,突出邊緣
img = cv2.Sobel(img, cv2.CV_8U, 1, 0, ksize=3)
#圖像的二值化就是將圖像上的像素點的灰度值設置為0或255,這樣將使整個圖像呈現出明顯的黑白效果,<150的全為黑,>150的全為白
ret, binary = cv2.threshold(img, 150, 255, cv2.THRESH_BINARY)
#膨脹,讓輪廓突出
element1 = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 7))
img = cv2.dilate(binary, element1, iterations=1)
#腐蝕
element2 = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 1))
img = cv2.erode(img, element2, iterations=1)
#膨脹,讓輪廓更明顯
img = cv2.dilate(img, element1, iterations=3)
###############################################
# 查找輪廓(img: 原始圖像,contours:矩形坐標點,hierarchy:圖像層次)
contours, hierarchy = cv2.findContours(img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
max_ratio = -1
ratios = []
num = 0
for i in range(len(contours)):
cnt = contours[i]
#計算輪廓面積
area = cv2.contourArea(cnt)
if area < 1000:
continue
#四邊形的最小外接矩形,得到最小外接矩形的(中心(x,y), (寬,高), 旋轉角度)
rect = cv2.minAreaRect(cnt)
# 矩形的四個坐標(順序不定,但是一定是一個左下角、左上角、右上角、右下角這種循環順序(開始是哪個點未知))
box = cv2.boxPoints(rect)
# 轉換為long類型
box = np.int0(box)
# 計算長寬高
height = abs(box[0][1] - box[2][1])
weight = abs(box[0][0] - box[2][0])
ratio = float(weight) / float(height)
# 正常的車牌寬高比在2.7~5之間
if ratio > max_ratio:
max_box = box
if ratio > 5.5 or ratio < 2:
continue
num +=1
ratios.append((max_box,ratio))
#返回就是車牌的矩陣的四個點的坐標
box = ratios[0][0]
print(box)
print(box[0,1])
ys = [box[0, 1], box[1, 1], box[2, 1], box[3, 1]]
print(ys)
xs = [box[0, 0], box[1, 0], box[2, 0], box[3, 0]]
ys_sorted_index = np.argsort(ys)
print(ys_sorted_index)
xs_sorted_index = np.argsort(xs)
# 獲取x上的坐標
x1 = box[xs_sorted_index[0], 0]
print(x1)
x2 = box[xs_sorted_index[3], 0]
print(x2)
# 獲取y上的坐標
y1 = box[ys_sorted_index[0], 1]
print(y1)
y2 = box[ys_sorted_index[3], 1]
#
img2 = cv2.imread('0.jpg')
# # 截取圖像
img_plate = img2[y1:y2, x1:x2]
cv2.imwrite('test1.jpg', img_plate)