python實現Huffman編碼


一、問題

利用二叉樹的結構對Huffman樹進行編碼,實現最短編碼

二、解決

 1 # 構建節點類
 2 class TreeNode:  3     def __init__(self, data):  4         """
 5  :data is a tuple the first element is value and the second is priority  6  :param data:  7         """
 8         self.value = data[0]  9         self.priority = data[1]  10         self.left_child = None  11         self.right_child = None  12         self.code = ""
 13 
 14 
 15 # 創建樹節點隊列的函數
 16 def create_node_queue(codes):  17     queue = []  18     for code in codes:  19  queue.append(TreeNode(code))  20     return queue  21 
 22 
 23 # 在隊列中間添加新的節點元素並保證優先度從大到小排列
 24 def add_queue(queue, node_new):  25     if len(queue) == 0:  26         return [node_new]  27     for i in range(len(queue)):  28         if queue[i].priority >= node_new.priority:  29             return queue[:i] + [node_new] + queue[i:]  30     return queue + [node_new]  31 
 32 
 33 # 節點隊列類
 34 class NodeQueue:  35     def __init__(self, code):  36         self.queue = create_node_queue(code)  37         self.size = len(self.queue)  38 
 39     def add_node(self, node):  40         self.queue = add_queue(self.queue, node)  41         self.size += 1
 42 
 43     def pop_node(self):  44         self.size -= 1
 45         return self.queue.pop(0)  46 
 47 
 48 # 各個字符在字符串中出現的次數 即計算優先度
 49 def frequent_char(string_s):  50     store_d = {}  51     for c in string_s:  52         if c not in store_d:  53             store_d[c] = 1
 54         else:  55             store_d[c] += 1
 56     return sorted(store_d.items(), key=lambda x: x[1])  57 
 58 
 59 # 創建Huffman樹
 60 def create_huffman_tree(node_queue):  61     while node_queue.size != 1:  62         node1 = node_queue.pop_node()  63         node2 = node_queue.pop_node()  64         r_1 = TreeNode([None, node1.priority + node2.priority])  65         r_1.left_child = node1  66         r_1.right_child = node2  67  node_queue.add_node(r_1)  68     return node_queue.pop_node()  69 
 70 
 71 code_dict1 = {}  72 code_dict2 = {}  73 
 74 
 75 # 由Huffman樹得到的Huffman編碼表
 76 def huffman_code_dict(head, x):  77     # global code_dict, code_list
 78     if head:  79         huffman_code_dict(head.left_child, x + "0")  80         head.code += x  81         if head.value:  82             code_dict2[head.code] = head.value  83             code_dict1[head.value] = head.code  84         huffman_code_dict(head.right_child, x + "1")  85 
 86 
 87 # 字符串編碼
 88 def trans_encode(string_s):  89     # global code_dict1
 90     trans_code = ""
 91     for c in string_s:  92         trans_code += code_dict1[c]  93     return trans_code  94 
 95 
 96 # 字符串解碼
 97 def trans_decode(string_s):  98     # global code_dict1
 99     code = ""
100     answer = ""
101     for c in string_s: 102         code += c 103         if code in code_dict2: 104             answer += code_dict2[code] 105             code = ""
106     return answer

 

三、總結
利用Huffman樹的編碼形式可以進行數據的壓縮,因此Huffman的應用也很廣泛。在此記錄一下方便以后查看。


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM