import cv2 import os import numpy as np from PIL import Image import datetime import csv from time import sleep # 調用筆記本內置攝像頭,所以參數為0,如果有其他的攝像頭可以調整參數為1,2 Path = r"C:\Program Files (x86)\Microsoft Visual Studio\Shared\Python36_64\Lib\site-packages\cv2\data\haarcascade_frontalface_default.xml" face_detector = cv2.CascadeClassifier(Path) names = [] zh_name = [] with open("maxmember.csv","r",encoding='UTF-8') as csv_file: reader = csv.reader(csv_file) for item in reader: # print(item) names.append(item[2]) zh_name.append(item[1]) # print (zh_name) def data_collection(): cap = cv2.VideoCapture(0,cv2.CAP_DSHOW)#cv2.CAP_DSHOW是作為open調用的一部分傳遞標志,還有許多其它的參數,而這個CAP_DSHOW是微軟特有的。 face_id = input('\n 請輸入你的ID:') print('\n 數據初始化中,請直視攝像機錄入數據....') count = 0 while True: # 從攝像頭讀取圖片 sucess, img = cap.read() # 轉為灰度圖片 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 檢測人臉 faces = face_detector.detectMultiScale(gray, 1.3, 5)#1.image表示的是要檢測的輸入圖像# 2.objects表示檢測到的人臉目標序列# 3.scaleFactor表示每次圖像尺寸減小的比例 for (x, y, w, h) in faces: #畫矩形 cv2.rectangle(img, (x, y), (x + w, y + w), (255, 0, 0)) count += 1 # 保存圖像 cv2.imwrite("facedata/Member." + str(face_id) + '.' + str(count) + '.jpg', gray[y: y + h, x: x + w]) cv2.imshow('data collection', img) # 保持畫面的持續。 k = cv2.waitKey(1) if k == 27: # 通過esc鍵退出攝像 break elif count >= 200: # 得到n個樣本后退出攝像 break cap.release() cv2.destroyAllWindows() def face_training(): # 人臉數據路徑 path = './facedata' recognizer = cv2.face.LBPHFaceRecognizer_create() #LBP是一種特征提取方式,能提取出圖像的局部的紋理特征 def get_images_and_labels(path): imagePaths = [os.path.join(path, f) for f in os.listdir(path)] # join函數將多個路徑組合后返回 faceSamples = [] ids = [] # 遍歷圖片路徑,導入圖片和id,添加到list for imagePath in imagePaths: PIL_img = Image.open(imagePath).convert('L') #通過圖片路徑並將其轉換為灰度圖片。 img_numpy = np.array(PIL_img, 'uint8') id = int(os.path.split(imagePath)[-1].split(".")[1]) faces = face_detector.detectMultiScale(img_numpy) for (x, y, w, h) in faces: faceSamples.append(img_numpy[y:y + h, x: x + w]) ids.append(id) return faceSamples, ids print('數據訓練中') faces, ids = get_images_and_labels(path) recognizer.train(faces, np.array(ids)) recognizer.write(r'.\trainer.yml') def face_ientification(): cap = cv2.VideoCapture(0) recognizer = cv2.face.LBPHFaceRecognizer_create() recognizer.read('./trainer.yml') faceCascade = cv2.CascadeClassifier(Path) font = cv2.FONT_HERSHEY_SIMPLEX idnum = 0 global namess cam = cv2.VideoCapture(0) #設置大小 minW = 0.1 * cam.get(3) minH = 0.1 * cam.get(4) while True: ret, img = cam.read() #圖像灰度處理 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 將人臉用vector保存各個人臉的坐標、大小(用矩形表示) faces = faceCascade.detectMultiScale( gray, scaleFactor=1.2,#表示在前后兩次相繼的掃描中,搜索窗口的比例系數 minNeighbors=5,#表示構成檢測目標的相鄰矩形的最小個數(默認為3個) minSize=(int(minW), int(minH))#minSize和maxSize用來限制得到的目標區域的范圍 ) for (x, y, w, h) in faces: cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2) # 返回偵測到的人臉的id和近似度conf(數字越大和訓練數據越不像) idnum, confidence = recognizer.predict(gray[y:y + h, x:x + w]) if confidence < 100: namess = names[idnum] confidence = "{0}%".format(round(100 - confidence)) else: namess = "unknown" confidence = "{0}%".format(round(100 - confidence)) cv2.putText(img, str(namess), (x + 5, y - 5), font, 1, (0, 0, 255), 1) cv2.putText(img, str(confidence), (x + 5, y + h - 5), font, 1, (0, 0, 0), 1)#輸出置信度 cv2.imshow(u'Identification punch', img) k = cv2.waitKey(5) if k == 13: theTime = datetime.datetime.now() # print(zh_name[idnum]) strings = [str(zh_name[idnum]),str(theTime)] print(strings) with open("log.csv", "a",newline="") as csvFile: writer = csv.writer(csvFile) writer.writerow([str(zh_name[idnum]),str(theTime)]) elif k==27: cap.release() cv2.destroyAllWindows() break while True: a = int(input("輸入1,錄入臉部,輸入2進行識別打卡:")) if a==1: data_collection() elif a==2: face_ientification() elif a==3: face_training()
人臉識別代碼部分,詳細參考https://www.cnblogs.com/xp12345/p/9818435.html