#
源碼如下:
#!/usr/bin/env python
#coding=utf-8
import os
from PIL import Image, ImageDraw
import cv
def detect_object(image):
'''檢測圖片,獲取人臉在圖片中的坐標'''
grayscale = cv.CreateImage((image.width, image.height), 8, 1)
cv.CvtColor(image, grayscale, cv.CV_BGR2GRAY)
cascade = cv.Load("/opt/local/share/OpenCV/haarcascades/haarcascade_frontalface_alt_tree.xml")
rect = cv.HaarDetectObjects(grayscale, cascade, cv.CreateMemStorage(), 1.1, 2,
cv.CV_HAAR_DO_CANNY_PRUNING, (20,20))
result = []
for r in rect:
result.append((r[0][0], r[0][1], r[0][0]+r[0][2], r[0][1]+r[0][3]))
return result
def process(infile):
'''在原圖上框出頭像並且截取每個頭像到單獨文件夾'''
image = cv.LoadImage(infile);
if image:
faces = detect_object(image)
im = Image.open(infile)
path = os.path.abspath(infile)
save_path = os.path.splitext(path)[0]+"_face"
try:
os.mkdir(save_path)
except:
pass
if faces:
draw = ImageDraw.Draw(im)
count = 0
for f in faces:
count += 1
draw.rectangle(f, outline=(255, 0, 0))
drow_save_path = os.path.join(save_path,"out.jpg")
im.save(drow_save_path, "JPEG", quality=80)
else:
print "Error: cannot detect faces on %s" % infile
if __name__ == "__main__":
process("/Users/zhangdebin/Documents/checkFace2.jpg")
示例圖片1:
可以看出,對於比較干凈的人臉頭像,使用opencv庫haarcascade_frontalface_alt_tree.xml的識別精度很高(這張達到了100%),同時,對於表情變化的人臉也有很強的魯棒性。
示例圖片2:
但是,對於上傳的比較隨意的頭像照片,比如示例圖片2這些有帽子、眼鏡遮擋的人臉圖片,識別效果就會很差,本組只有唯一一個沒有帽子遮擋的人臉被識別成功