1、項目介紹:
搭建淺層神經網絡完成MNIST數字圖像的識別。
2、詳細步驟:
(1)將二維圖像轉成一維,MNIST圖像大小為28*28,轉成一維就是784。
(2)定義好神經網絡的相關參數:
# MNIST數據集相關的常數 INPUT_NODE = 784; OUTPUT_NODE = 10; LAYER1_NODE = 500; BATCH_SIZE = 100; LEARNING_RATE_BASE = 0.8; LEARNING_RATE_DECAY = 0.99; REGULARIZATION_RATE = 0.0001; TRAINING_STEPS = 5000; MOVING_ACERTAGE_DECAY = 0.99;
(3)定義一個接口來算神網輸出結果,之所以設置這個接口是因為為了適應滑動平均的方法:
def interface(input_tensor,avg_class,weights1,biases1,weights2,biases2): if avg_class == None: layer1 = tf.nn.relu(tf.matmul(input_tensor,weights1)+biases1); return tf.matmul(layer1,weights2)+biases2; else: layer1 = tf.nn.relu(tf.matmul(input_tensor,avg_class.average(weights1))+avg_class.\ average(biases1)); return tf.matmul(layer1,avg_class.average(weights2))+avg_class.average(biases2);
(4)定義訓練主函數:
訓練主函數按照:輸入輸出placeholder,各層網絡節點權值與偏移量定義,設置滑動平滑,輸出兩種結果y和acroos_y,定義y的交叉熵和正則化,定義指數衰減學習,訓練。
def train(mnist): x = tf.placeholder(dtype=tf.float32,shape=[None,INPUT_NODE],name="x_input"); y_ = tf.placeholder(dtype=tf.float32,shape=[None,OUTPUT_NODE],name="y_output"); weights1 = tf.Variable(tf.truncated_normal(shape=[INPUT_NODE,LAYER1_NODE],stddev=0.1)); biases1 = tf.Variable(tf.constant(0.1,dtype=tf.float32,shape=[LAYER1_NODE])); weights2 = tf.Variable(tf.truncated_normal(shape=[LAYER1_NODE,OUTPUT_NODE],stddev=0.1)); biases2 = tf.Variable(tf.constant(0.1,dtype=tf.float32,shape=[OUTPUT_NODE])); y = interface(x,None,weights1,biases1,weights2,biases2); global_step = tf.Variable(0,trainable=False); variable_averages = tf.train.ExponentialMovingAverage(MOVING_ACERTAGE_DECAY,global_step); variable_averages_op = variable_averages.apply(tf.trainable_variables()); average_y = interface(x,variable_averages,weights1,biases1,weights2,biases2); # why???????????????????? # 這里的交叉熵是以 y 為標准的 cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y,labels=tf.argmax(y_,1)); cross_entropy_mean = tf.reduce_mean(cross_entropy); regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE); regularization = regularizer(weights1) + regularizer(weights2); loss = cross_entropy_mean + regularization; learning_rate = tf.train.exponential_decay(LEARNING_RATE_BASE, global_step, mnist.train.num_examples / BATCH_SIZE, LEARNING_RATE_DECAY); train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss,global_step = global_step); with tf.control_dependencies([train_step,variable_averages_op]): train_op = tf.no_op(name="train"); correct_prediction = tf.equal(tf.argmax(average_y,1),tf.argmax(y_,1)); accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)); with tf.Session() as sess: tf.global_variables_initializer().run(); validate_feed = {x:mnist.validation.images, y_:mnist.validation.labels}; test_feed = {x:mnist.test.images, y_:mnist.test.labels}; for i in range(TRAINING_STEPS): if i % 1000 == 0: validate_acc = sess.run(accuracy,feed_dict = validate_feed); print("After %d training step(s), validation accuracy using average model is %g " \ % (i, validate_acc)); xs,ys = mnist.train.next_batch(BATCH_SIZE) sess.run(train_op,feed_dict={x:xs,y_:ys}); test_acc = sess.run(accuracy,feed_dict = test_feed); print(("After %d training step(s), test accuracy using average model is %g" %(TRAINING_STEPS, test_acc)));
(5)主函數代碼:
def main(argv = None): mnist = input_data.read_data_sets("C://Users/hasee/TensorFlow/實戰TensorFlow代碼/datasets/MNIST_data/", one_hot=True); train(mnist);
(6)運行程序:
if __name__ == "__main__": main();