一:所在包
from sklearn.preprocessing import StandardScaler。
二:步驟
a.將訓練集進行fit操作
b.在將訓練集進行transform操作,得到均值為0,方差為1的數據集。
c.對測試集進行transform操作,但是不需要在進行fit,應使用訓練集fit后得出的參數。
三:代碼
import numpy as np from sklearn import datasets from sklearn.neighbors import KNeighborsClassifier from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split iris = datasets.load_iris() x = iris.data y = iris.target x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2,random_state=666) standard = StandardScaler() standard.fit(x_train) x_train = standard.transform(x_train) x_test_standard = standard.transform(x_test) knn = KNeighborsClassifier(n_neighbors=3,n_jobs=-1) knn.fit(x_train,y_train) score = knn.score(x_test_standard,y_test) print(score)