scikit-learn中自带的均值方差归一化函数


一:所在包

    from sklearn.preprocessing import StandardScaler。

二:步骤

  a.将训练集进行fit操作

  b.在将训练集进行transform操作,得到均值为0,方差为1的数据集。

  c.对测试集进行transform操作,但是不需要在进行fit,应使用训练集fit后得出的参数。

三:代码

 

import numpy as np
from sklearn import datasets
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split

iris = datasets.load_iris()
x = iris.data
y = iris.target

x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2,random_state=666)

standard = StandardScaler()
standard.fit(x_train)
x_train = standard.transform(x_train)

x_test_standard = standard.transform(x_test)

knn = KNeighborsClassifier(n_neighbors=3,n_jobs=-1)

knn.fit(x_train,y_train)


score = knn.score(x_test_standard,y_test)

print(score)

 

 

 

  


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM