參考:http://blog.sina.com.cn/s/blog_13050351e0102xfis.html
https://www.sogou.com/link?url=DOb0bgH2eKh1ibpaMGjuy-bS_O7xQYLPIOogrOFmc02ueKW9M67CaVLpMY1k7wxTCB1NmnNSzM-t5pUc3zy0dg..
https://www.sogou.com/link?url=DOb0bgH2eKh1ibpaMGjuy6YnbQPc3cuKWH5w_8iuvJBomuBEhdSpHkUUZED5fr2OXwl-dB-nkEs_c1NbUyGLxQ..
https://jingyan.baidu.com/article/ca00d56c1b3647e99eebcfbd.html
import numpy as np
import pandas as pd
from pandas import Series,DataFrame
from numpy import nan as NaN
import tensorflow as tf
import matplotlib.pyplot as plt
import scipy.io as sio
import os
from sklearn import preprocessing
讀取mat數據
load_path="08_1.mat"
load_data = sio.loadmat(load_path)
a = load_data['D']
print(a)
data = DataFrame(a)
print(data)
data.fillna(0)
print(data.fillna(0))
b=data.fillna(0).values
print(b)
數據歸一化
a2 = preprocessing.scale(b)
print('數據歸一化:')
print(a2)
數據清洗方法2 刪除NAN所在的列
load_path2="08_1.mat"
load_data2 = sio.loadmat(load_path2)
a2 = load_data2['D']
print(a2)
data2 = DataFrame(a2)
data2.dropna(axis=0, how='any')
print(data2.dropna(axis=0, how='any'))`
處理前:
處理后: