給定精確度ξ,用二分法求函數f(x)零點近似值的步驟如下:
1 確定區間[a,b],驗證f(a)·f(b)<0,給定精確度ξ.
2 求區間(a,b)的中點c.
3 計算f(c).
(1) 若f(c)=0,則c就是函數的零點;
(2) 若f(a)·f(c)<0,則令b=c;
(3) 若f(c)·f(b)<0,則令a=c.
(4) 判斷是否達到精確度ξ:即若|a-b|<ξ,則得到零點近似值a(或b),否則重復2-4
double fun(double a, double b,double ep)//二分法,[a,b]區間進行迭代遞歸,ep是精度 { int k = 0; while (abs(a - b) > 2 * ep) { double x0 = (a + b) * 0.5; double fx0 = fx(x0); double fa = fx(a); double fb = fx(b); if (fa * fx0 < 0) { b = x0; } else if (fa * x0 == 0) { break; } else { a = x0; } k++; printResult(a, b, k); } return (a + b )*0.5; } double fx(double x)//函數式只需要對返回值進行修改即可 { return exp(x) - x * x + 3.0 * x - 2.0; } void printResult(double ax, double bx,int k) { cout<<k<<"\t" << ax << "\t" << bx << "\t" << (ax+bx)*0.5 << "\t"; if (fx((ax + bx) * 0.5) > 0) { cout << "+" << endl; } else { cout << "-" << endl; } }
