記錄如何用Pytorch搭建LeNet-5,大體步驟包括:網絡的搭建->前向傳播->定義Loss和Optimizer->訓練
# -*- coding: utf-8 -*-
# All codes and comments from <<深度學習框架Pytorch入門與實踐>>
# Code url : https://github.com/zhouzhoujack/pytorch-book
# lesson_2 : Neural network of PT(Pytorch)
# torch.nn是專門為神經網絡設計的模塊化接口,nn構建於 Autograd之上,可用來定義和運行神經網絡
# 定義網絡時,需要繼承nn.Module,並實現它的forward方法,把網絡中具有可學習參數的層放在構造函數__init__中
# 下面是LeNet-5網絡結構
import torch as t
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
# nn.Module子類的函數必須在構造函數中執行父類的構造函數
# 下式等價於nn.Module.__init__(self)
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 6, 5) # 卷積層'1'表示輸入圖片為單通道, '6'表示輸出通道數,'5'表示卷積核為5*5
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(in_features=16 * 5 * 5, out_features=120, bias=True) # 全連接層,y = x*transposition(A) + b
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = F.max_pool2d(input=F.relu(self.conv1(x)), kernel_size=(2, 2)) # 卷積 -> 激活 -> 池化
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
# view函數只能由於contiguous的張量上,就是在內存中連續存儲的張量,當tensor之前調用了transpose,
# permute函數就會是tensor內存中變得不再連續,就不能調用view函數。
# tensor.view() = np.reshape()
x = x.view(x.size()[0], -1)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
"""
Net(
(conv1): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))
(conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
(fc1): Linear(in_features=400, out_features=120, bias=True)
(fc2): Linear(in_features=120, out_features=84, bias=True)
(fc3): Linear(in_features=84, out_features=10, bias=True)
)
"""
net = Net()
# 網絡的可學習參數通過net.parameters()返回,net.named_parameters可同時返回可學習的參數及名稱
"""
conv1.weight : torch.Size([6, 1, 5, 5])
conv1.bias : torch.Size([6])
conv2.weight : torch.Size([16, 6, 5, 5])
conv2.bias : torch.Size([16])
fc1.weight : torch.Size([120, 400])
fc1.bias : torch.Size([120])
fc2.weight : torch.Size([84, 120])
fc2.bias : torch.Size([84])
fc3.weight : torch.Size([10, 84])
fc3.bias : torch.Size([10])
"""
# parameters infomation of network
# params = list(net.parameters())
# for name,parameters in net.named_parameters():
# print(name,':',parameters.size())
if __name__ == '__main__':
"""
計算圖如下:
input -> conv2d -> relu -> maxpool2d -> conv2d -> relu -> maxpool2d
-> view -> linear -> relu -> linear -> relu -> linear
-> MSELoss
-> loss
"""
input = t.randn(1, 1, 32, 32)
output = net(input)
# >>torch.arange(1., 4.)
# >>1 2 3 [torch.FloatTensor of size 3]
# if missing . , the type of torch will change to int
target = t.arange(0., 10.).view(1, 10)
criterion = nn.MSELoss()
loss = criterion(output, target)
print(loss)
# 運行.backward,觀察調用之前和調用之后的grad
net.zero_grad() # 把net中所有可學習參數的梯度清零
print('反向傳播之前 conv1.bias的梯度')
print(net.conv1.bias.grad)
loss.backward()
print('反向傳播之后 conv1.bias的梯度')
print(net.conv1.bias.grad)
# Optimizer
# torch.optim中實現了深度學習中絕大多數的優化方法,例如RMSProp、Adam、SGD等
# 在反向傳播計算完所有參數的梯度后,還需要使用優化方法來更新網絡的權重和參數,例如隨機梯度下降法(SGD)的更新策略如下:
# weight = weight - learning_rate * gradient
optimizer = optim.SGD(net.parameters(), lr=0.01)
# 在訓練過程中
# 先梯度清零(與net.zero_grad()效果一樣)
optimizer.zero_grad()
# 計算損失
output = net(input)
loss = criterion(output, target)
# 反向傳播
loss.backward()
# 更新參數
optimizer.step()
nn.Conv2d()詳解
torch.nn.Conv2d(in_channels, # input channels
out_channels, # output channels
kernel_size, # conv kernel size
stride=1,
padding=0, # add the number of zeros per dimension
dilation=1,
groups=1,
bias=True # default=True
)
其中Conv2d 的輸入 input 尺寸為
,輸出 output 尺寸為
Feature Map 大小計算
Size of Feature Map = (W - F + 2P)/S + 1
W : 輸入圖像尺寸寬度
F : 卷積核寬度
P:邊界填充0數量
S:滑動步長
例如:
輸入(227,227,3)
卷積層 kernel_size = 11
stride = 4
padding = 0
n(卷積核數量) = 96
輸出 (55,55,96)
(227 - 11 + 0) /4 +1 = 55
參考資料
nn.Conv2d()詳解:https://www.aiuai.cn/aifarm618.html