隨機森林random forest及python實現


引言
想通過隨機森林來獲取數據的主要特征

1、理論
根據個體學習器的生成方式,目前的集成學習方法大致可分為兩大類,即個體學習器之間存在強依賴關系,必須串行生成的序列化方法,以及個體學習器間不存在強依賴關系,可同時生成的並行化方法;

前者的代表是Boosting,后者的代表是Bagging和“隨機森林”(Random
Forest)

隨機森林在以決策樹為基學習器構建Bagging集成的基礎上,進一步在決策樹的訓練過程中引入了隨機屬性選擇(即引入隨機特征選擇)。

簡單來說,隨機森林就是對決策樹的集成,但有兩點不同:

(2)特征選取的差異性:每個決策樹的n個分類特征是在所有特征中隨機選擇的(n是一個需要我們自己調整的參數)

隨機森林,簡單理解,
比如預測salary,就是構建多個決策樹job,age,house,然后根據要預測的量的各個特征(teacher,39,suburb)分別在對應決策樹的目標值概率(salary<5000,salary>=5000),從而,確定預測量的發生概率(如,預測出P(salary<5000)=0.3).

參數說明:
最主要的兩個參數是n_estimators和max_features。
n_estimators:表示森林里樹的個數。理論上是越大越好。但是伴隨着就是計算時間的增長。但是並不是取得越大就會越好,預測效果最好的將會出現在合理的樹個數。
max_features:隨機選擇特征集合的子集合,並用來分割節點。子集合的個數越少,方差就會減少的越快,但同時偏差就會增加的越快。根據較好的實踐經驗。如果是回歸問題則:
max_features=n_features,如果是分類問題則max_features=sqrt(n_features)。

如果想獲取較好的結果,必須將max_depth=None,同時min_sample_split=1。
同時還要記得進行cross_validated(交叉驗證),除此之外記得在random forest中,bootstrap=True。但在extra-trees中,bootstrap=False。

2、隨機森林python實現
2.1隨機森林回歸器的使用Demo1

實現隨機森林基本功能

#隨機森林

from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
import numpy as np

from sklearn.datasets import load_iris
iris=load_iris()
#print iris#iris的4個屬性是:萼片寬度 萼片長度 花瓣寬度 花瓣長度 標簽是花的種類:setosa versicolour virginica
print(iris['target'].shape)
rf=RandomForestRegressor()#這里使用了默認的參數設置
rf.fit(iris.data[:150],iris.target[:150])#進行模型的訓練
#

#隨機挑選兩個預測不相同的樣本
instance=iris.data[[100,109]]
print(instance)
rf.predict(instance[[0]])
print('instance 0 prediction;',rf.predict(instance[[0]]))
print( 'instance 1 prediction;',rf.predict(instance[[1]]))
print(iris.target[100],iris.target[109])

運行結果

(150,)
[[ 6.3 3.3 6. 2.5]
[ 7.2 3.6 6.1 2.5]]
instance 0 prediction; [ 2.]
instance 1 prediction; [ 2.]
2 2

2.2 隨機森林分類器、決策樹、extra樹分類器的比較Demo2
3種方法的比較

#random forest test

from sklearn.model_selection import cross_val_score
from sklearn.datasets import make_blobs
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.tree import DecisionTreeClassifier

X, y = make_blobs(n_samples=10000, n_features=10, centers=100,random_state=0)

clf = DecisionTreeClassifier(max_depth=None, min_samples_split=2,random_state=0)
scores = cross_val_score(clf, X, y)
print(scores.mean())


clf = RandomForestClassifier(n_estimators=10, max_depth=None,min_samples_split=2, random_state=0)
scores = cross_val_score(clf, X, y)
print(scores.mean())

clf = ExtraTreesClassifier(n_estimators=10, max_depth=None,min_samples_split=2, random_state=0)
scores = cross_val_score(clf, X, y)
print(scores.mean())

運行結果:

0.979408793821
0.999607843137
0.999898989899
1
2
3
2.3 隨機森林回歸器regressor-實現特征選擇

#隨機森林2

from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
import numpy as np

from sklearn.datasets import load_iris
iris=load_iris()

from sklearn.model_selection import cross_val_score, ShuffleSplit
X = iris["data"]
Y = iris["target"]
names = iris["feature_names"]

rf = RandomForestRegressor()
scores = []
for i in range(X.shape[1]):
score = cross_val_score(rf, X[:, i:i+1], Y, scoring="r2",
cv=ShuffleSplit(len(X), 3, .3))
scores.append((round(np.mean(score), 3), names[i]))

print(sorted(scores, reverse=True))

運行結果:

[(0.89300000000000002, 'petal width (cm)'), (0.82099999999999995, 'petal length
(cm)'), (0.13, 'sepal length (cm)'), (-0.79100000000000004, 'sepal width (cm)')]
1
2
2.4 demo4-隨機森林
本來想利用以下代碼來構建隨機隨機森林決策樹,但是,遇到的問題是,程序一直在運行,無法響應,還需要調試。

#隨機森林4

#coding:utf-8
import csv
from random import seed
from random import randrange
from math import sqrt

def loadCSV(filename):#加載數據,一行行的存入列表
dataSet = []
with open(filename, 'r') as file:
csvReader = csv.reader(file)
for line in csvReader:
dataSet.append(line)
return dataSet

# 除了標簽列,其他列都轉換為float類型
def column_to_float(dataSet):
featLen = len(dataSet[0]) - 1
for data in dataSet:
for column in range(featLen):
data[column] = float(data[column].strip())

# 將數據集隨機分成N塊,方便交叉驗證,其中一塊是測試集,其他四塊是訓練集
def spiltDataSet(dataSet, n_folds):
fold_size = int(len(dataSet) / n_folds)
dataSet_copy = list(dataSet)
dataSet_spilt = []
for i in range(n_folds):
fold = []
while len(fold) < fold_size: # 這里不能用if,if只是在第一次判斷時起作用,while執行循環,直到條件不成立
index = randrange(len(dataSet_copy))
fold.append(dataSet_copy.pop(index)) # pop() 函數用於移除列表中的一個元素(默認最后一個元素),並且返回該元素的值。
dataSet_spilt.append(fold)
return dataSet_spilt

# 構造數據子集
def get_subsample(dataSet, ratio):
subdataSet = []
lenSubdata = round(len(dataSet) * ratio)#返回浮點數
while len(subdataSet) < lenSubdata:
index = randrange(len(dataSet) - 1)
subdataSet.append(dataSet[index])
# print len(subdataSet)
return subdataSet

# 分割數據集
def data_spilt(dataSet, index, value):
left = []
right = []
for row in dataSet:
if row[index] < value:
left.append(row)
else:
right.append(row)
return left, right

# 計算分割代價
def spilt_loss(left, right, class_values):
loss = 0.0
for class_value in class_values:
left_size = len(left)
if left_size != 0: # 防止除數為零
prop = [row[-1] for row in left].count(class_value) / float(left_size)
loss += (prop * (1.0 - prop))
right_size = len(right)
if right_size != 0:
prop = [row[-1] for row in right].count(class_value) / float(right_size)
loss += (prop * (1.0 - prop))
return loss

# 選取任意的n個特征,在這n個特征中,選取分割時的最優特征
def get_best_spilt(dataSet, n_features):
features = []
class_values = list(set(row[-1] for row in dataSet))
b_index, b_value, b_loss, b_left, b_right = 999, 999, 999, None, None
while len(features) < n_features:
index = randrange(len(dataSet[0]) - 1)
if index not in features:
features.append(index)
# print 'features:',features
for index in features:#找到列的最適合做節點的索引,(損失最小)
for row in dataSet:
left, right = data_spilt(dataSet, index, row[index])#以它為節點的,左右分支
loss = spilt_loss(left, right, class_values)
if loss < b_loss:#尋找最小分割代價
b_index, b_value, b_loss, b_left, b_right = index, row[index], loss, left, right
# print b_loss
# print type(b_index)
return {'index': b_index, 'value': b_value, 'left': b_left, 'right': b_right}

# 決定輸出標簽
def decide_label(data):
output = [row[-1] for row in data]
return max(set(output), key=output.count)


# 子分割,不斷地構建葉節點的過程對對對
def sub_spilt(root, n_features, max_depth, min_size, depth):
left = root['left']
# print left
right = root['right']
del (root['left'])
del (root['right'])
# print depth
if not left or not right:
root['left'] = root['right'] = decide_label(left + right)
# print 'testing'
return
if depth > max_depth:
root['left'] = decide_label(left)
root['right'] = decide_label(right)
return
if len(left) < min_size:
root['left'] = decide_label(left)
else:
root['left'] = get_best_spilt(left, n_features)
# print 'testing_left'
sub_spilt(root['left'], n_features, max_depth, min_size, depth + 1)
if len(right) < min_size:
root['right'] = decide_label(right)
else:
root['right'] = get_best_spilt(right, n_features)
# print 'testing_right'
sub_spilt(root['right'], n_features, max_depth, min_size, depth + 1)

# 構造決策樹
def build_tree(dataSet, n_features, max_depth, min_size):
root = get_best_spilt(dataSet, n_features)
sub_spilt(root, n_features, max_depth, min_size, 1)
return root
# 預測測試集結果
def predict(tree, row):
predictions = []
if row[tree['index']] < tree['value']:
if isinstance(tree['left'], dict):
return predict(tree['left'], row)
else:
return tree['left']
else:
if isinstance(tree['right'], dict):
return predict(tree['right'], row)
else:
return tree['right']
# predictions=set(predictions)
def bagging_predict(trees, row):
predictions = [predict(tree, row) for tree in trees]
return max(set(predictions), key=predictions.count)
# 創建隨機森林
def random_forest(train, test, ratio, n_feature, max_depth, min_size, n_trees):
trees = []
for i in range(n_trees):
train = get_subsample(train, ratio)#從切割的數據集中選取子集
tree = build_tree(train, n_features, max_depth, min_size)
# print 'tree %d: '%i,tree
trees.append(tree)
# predict_values = [predict(trees,row) for row in test]
predict_values = [bagging_predict(trees, row) for row in test]
return predict_values
# 計算准確率
def accuracy(predict_values, actual):
correct = 0
for i in range(len(actual)):
if actual[i] == predict_values[i]:
correct += 1
return correct / float(len(actual))


if __name__ == '__main__':
seed(1)
dataSet = loadCSV(r'G:\0研究生\tianchiCompetition\訓練小樣本2.csv')
column_to_float(dataSet)
n_folds = 5
max_depth = 15
min_size = 1
ratio = 1.0
# n_features=sqrt(len(dataSet)-1)
n_features = 15
n_trees = 10
folds = spiltDataSet(dataSet, n_folds)#先是切割數據集
scores = []
for fold in folds:
train_set = folds[
:] # 此處不能簡單地用train_set=folds,這樣用屬於引用,那么當train_set的值改變的時候,folds的值也會改變,所以要用復制的形式。(L[:])能夠復制序列,D.copy() 能夠復制字典,list能夠生成拷貝 list(L)
train_set.remove(fold)#選好訓練集
# print len(folds)
train_set = sum(train_set, []) # 將多個fold列表組合成一個train_set列表
# print len(train_set)
test_set = []
for row in fold:
row_copy = list(row)
row_copy[-1] = None
test_set.append(row_copy)
# for row in test_set:
# print row[-1]
actual = [row[-1] for row in fold]
predict_values = random_forest(train_set, test_set, ratio, n_features, max_depth, min_size, n_trees)
accur = accuracy(predict_values, actual)
scores.append(accur)
print ('Trees is %d' % n_trees)
print ('scores:%s' % scores)
print ('mean score:%s' % (sum(scores) / float(len(scores))))

2.5 隨機森林分類sonic data

# CART on the Bank Note dataset
from random import seed
from random import randrange
from csv import reader

# Load a CSV file
def load_csv(filename):
file = open(filename, "r")
lines = reader(file)
dataset = list(lines)
return dataset

# Convert string column to float
def str_column_to_float(dataset, column):
for row in dataset:
row[column] = float(row[column].strip())

# Split a dataset into k folds
def cross_validation_split(dataset, n_folds):
dataset_split = list()
dataset_copy = list(dataset)
fold_size = int(len(dataset) / n_folds)
for i in range(n_folds):
fold = list()
while len(fold) < fold_size:
index = randrange(len(dataset_copy))
fold.append(dataset_copy.pop(index))
dataset_split.append(fold)
return dataset_split

# Calculate accuracy percentage
def accuracy_metric(actual, predicted):
correct = 0
for i in range(len(actual)):
if actual[i] == predicted[i]:
correct += 1
return correct / float(len(actual)) * 100.0

# Evaluate an algorithm using a cross validation split
def evaluate_algorithm(dataset, algorithm, n_folds, *args):
folds = cross_validation_split(dataset, n_folds)
scores = list()
for fold in folds:
train_set = list(folds)
train_set.remove(fold)
train_set = sum(train_set, [])
test_set = list()
for row in fold:
row_copy = list(row)
test_set.append(row_copy)
row_copy[-1] = None
predicted = algorithm(train_set, test_set, *args)
actual = [row[-1] for row in fold]
accuracy = accuracy_metric(actual, predicted)
scores.append(accuracy)
return scores

# Split a data set based on an attribute and an attribute value
def test_split(index, value, dataset):
left, right = list(), list()
for row in dataset:
if row[index] < value:
left.append(row)
else:
right.append(row)
return left, right

# Calculate the Gini index for a split dataset
def gini_index(groups, class_values):
gini = 0.0
for class_value in class_values:
for group in groups:
size = len(group)
if size == 0:
continue
proportion = [row[-1] for row in group].count(class_value) / float(size)
gini += (proportion * (1.0 - proportion))
return gini

# Select the best split point for a dataset
def get_split(dataset):
class_values = list(set(row[-1] for row in dataset))
b_index, b_value, b_score, b_groups = 999, 999, 999, None
for index in range(len(dataset[0])-1):
for row in dataset:
groups = test_split(index, row[index], dataset)
gini = gini_index(groups, class_values)
if gini < b_score:
b_index, b_value, b_score, b_groups = index, row[index], gini, groups
print ({'index':b_index, 'value':b_value})
return {'index':b_index, 'value':b_value, 'groups':b_groups}

# Create a terminal node value
def to_terminal(group):
outcomes = [row[-1] for row in group]
return max(set(outcomes), key=outcomes.count)

# Create child splits for a node or make terminal
def split(node, max_depth, min_size, depth):
left, right = node['groups']
del(node['groups'])
# check for a no split
if not left or not right:
node['left'] = node['right'] = to_terminal(left + right)
return
# check for max depth
if depth >= max_depth:
node['left'], node['right'] = to_terminal(left), to_terminal(right)
return
# process left child
if len(left) <= min_size:
node['left'] = to_terminal(left)
else:
node['left'] = get_split(left)
split(node['left'], max_depth, min_size, depth+1)
# process right child
if len(right) <= min_size:
node['right'] = to_terminal(right)
else:
node['right'] = get_split(right)
split(node['right'], max_depth, min_size, depth+1)

# Build a decision tree
def build_tree(train, max_depth, min_size):
root = get_split(train)
split(root, max_depth, min_size, 1)
return root

# Make a prediction with a decision tree
def predict(node, row):
if row[node['index']] < node['value']:
if isinstance(node['left'], dict):
return predict(node['left'], row)
else:
return node['left']
else:
if isinstance(node['right'], dict):
return predict(node['right'], row)
else:
return node['right']

# Classification and Regression Tree Algorithm
def decision_tree(train, test, max_depth, min_size):
tree = build_tree(train, max_depth, min_size)
predictions = list()
for row in test:
prediction = predict(tree, row)
predictions.append(prediction)
return(predictions)

# Test CART on Bank Note dataset
seed(1)
# load and prepare data
filename = r'G:\0pythonstudy\決策樹\sonar.all-data.csv'
dataset = load_csv(filename)
# convert string attributes to integers
for i in range(len(dataset[0])-1):
str_column_to_float(dataset, i)
# evaluate algorithm
n_folds = 5
max_depth = 5
min_size = 10
scores = evaluate_algorithm(dataset, decision_tree, n_folds, max_depth, min_size)
print('Scores: %s' % scores)
print('Mean Accuracy: %.3f%%' % (sum(scores)/float(len(scores))))

運行結果:

{'index': 38, 'value': 0.0894}
{'index': 36, 'value': 0.8459}
{'index': 50, 'value': 0.0024}
{'index': 15, 'value': 0.0906}
{'index': 16, 'value': 0.9819}
{'index': 10, 'value': 0.0785}
{'index': 16, 'value': 0.0886}
{'index': 38, 'value': 0.0621}
{'index': 5, 'value': 0.0226}
{'index': 8, 'value': 0.0368}
{'index': 11, 'value': 0.0754}
{'index': 0, 'value': 0.0239}
{'index': 8, 'value': 0.0368}
{'index': 29, 'value': 0.1671}
{'index': 46, 'value': 0.0237}
{'index': 38, 'value': 0.0621}
{'index': 14, 'value': 0.0668}
{'index': 4, 'value': 0.0167}
{'index': 37, 'value': 0.0836}
{'index': 12, 'value': 0.0616}
{'index': 7, 'value': 0.0333}
{'index': 33, 'value': 0.8741}
{'index': 16, 'value': 0.0886}
{'index': 8, 'value': 0.0368}
{'index': 33, 'value': 0.0798}
{'index': 44, 'value': 0.0298}
Scores: [48.78048780487805, 70.73170731707317, 58.536585365853654, 51.2195121951
2195, 39.02439024390244]
Mean Accuracy: 53.659%

請按任意鍵繼續. . .

知識點:
1.load CSV file

from csv import reader

# Load a CSV file
def load_csv(filename):
file = open(filename, "r")
lines = reader(file)
dataset = list(lines)
return dataset

filename = r'G:\0pythonstudy\決策樹\sonar.all-data.csv'
dataset=load_csv(filename)
print(dataset)

2.把數據轉化成float格式

# Convert string column to float
def str_column_to_float(dataset, column):
for row in dataset:
row[column] = float(row[column].strip())
# print(row[column])

# convert string attributes to integers
for i in range(len(dataset[0])-1):
str_column_to_float(dataset, i)

3.把最后一列的分類字符串轉化成0、1整數

def str_column_to_int(dataset, column):
class_values = [row[column] for row in dataset]#生成一個class label的list
# print(class_values)
unique = set(class_values)#set 獲得list的不同元素
print(unique)

lookup = dict()#定義一個字典
# print(enumerate(unique))
for i, value in enumerate(unique):
lookup[value] = i
# print(lookup)
for row in dataset:
row[column] = lookup[row[column]]
print(lookup['M'])

4、把數據集分割成K份

# Split a dataset into k folds
def cross_validation_split(dataset, n_folds):
dataset_split = list()#生成空列表

dataset_copy = list(dataset)
print(len(dataset_copy))
print(len(dataset))
#print(dataset_copy)
fold_size = int(len(dataset) / n_folds)
for i in range(n_folds):
fold = list()
while len(fold) < fold_size:
index = randrange(len(dataset_copy))
# print(index)
fold.append(dataset_copy.pop(index))#使用.pop()把里邊的元素都刪除(相當於轉移),這k份元素各不相同。
dataset_split.append(fold)
return dataset_split

n_folds=5
folds = cross_validation_split(dataset, n_folds)#k份元素各不相同的訓練集

5.計算正確率

# Calculate accuracy percentage
def accuracy_metric(actual, predicted):
correct = 0
for i in range(len(actual)):
if actual[i] == predicted[i]:
correct += 1
return correct / float(len(actual)) * 100.0#這個是二值分類正確性的表達式

6.二分類每列

# Split a data set based on an attribute and an attribute value
def test_split(index, value, dataset):
left, right = list(), list()#初始化兩個空列表
for row in dataset:
if row[index] < value:
left.append(row)
else:
right.append(row)
return left, right #返回兩個列表,每個列表以value為界限對指定行(index)進行二分類。

7.使用gini系數來獲得最佳分割點

# Calculate the Gini index for a split dataset
def gini_index(groups, class_values):
gini = 0.0
for class_value in class_values:
for group in groups:
size = len(group)
if size == 0:
continue
proportion = [row[-1] for row in group].count(class_value) / float(size)
gini += (proportion * (1.0 - proportion))
return gini

# Select the best split point for a dataset
def get_split(dataset):
class_values = list(set(row[-1] for row in dataset))
b_index, b_value, b_score, b_groups = 999, 999, 999, None
for index in range(len(dataset[0])-1):
for row in dataset:
groups = test_split(index, row[index], dataset)
gini = gini_index(groups, class_values)
if gini < b_score:
b_index, b_value, b_score, b_groups = index, row[index], gini, groups
# print(groups)
print ({'index':b_index, 'value':b_value,'score':gini})
return {'index':b_index, 'value':b_value, 'groups':b_groups}

這段代碼,在求gini指數,直接應用定義式,不難理解。獲得最佳分割點可能比較難看懂,這里用了兩層迭代,一層是對不同列的迭代,一層是對不同行的迭代。並且,每次迭代,都對gini系數進行更新。

8、決策樹生成

# Create child splits for a node or make terminal
def split(node, max_depth, min_size, depth):
left, right = node['groups']
del(node['groups'])
# check for a no split
if not left or not right:
node['left'] = node['right'] = to_terminal(left + right)
return
# check for max depth
if depth >= max_depth:
node['left'], node['right'] = to_terminal(left), to_terminal(right)
return
# process left child
if len(left) <= min_size:
node['left'] = to_terminal(left)
else:
node['left'] = get_split(left)
split(node['left'], max_depth, min_size, depth+1)
# process right child
if len(right) <= min_size:
node['right'] = to_terminal(right)
else:
node['right'] = get_split(right)
split(node['right'], max_depth, min_size, depth+1)

這里使用了遞歸編程,不斷生成左叉樹和右叉樹。

9.構建決策樹

# Build a decision tree
def build_tree(train, max_depth, min_size):
root = get_split(train)
split(root, max_depth, min_size, 1)
return root

tree=build_tree(train_set, max_depth, min_size)
print(tree)

10、預測test集

# Build a decision tree
def build_tree(train, max_depth, min_size):
root = get_split(train)#獲得最好的分割點,下標值,groups
split(root, max_depth, min_size, 1)
return root

# tree=build_tree(train_set, max_depth, min_size)
# print(tree)

# Make a prediction with a decision tree
def predict(node, row):
print(row[node['index']])
print(node['value'])
if row[node['index']] < node['value']:#用測試集來代入訓練的最好分割點,分割點有偏差時,通過搜索左右叉樹來進一步比較。
if isinstance(node['left'], dict):#如果是字典類型,執行操作
return predict(node['left'], row)
else:
return node['left']
else:
if isinstance(node['right'], dict):
return predict(node['right'], row)
else:
return node['right']

tree = build_tree(train_set, max_depth, min_size)
predictions = list()
for row in test_set:
prediction = predict(tree, row)
predictions.append(prediction)

11.評價決策樹

# Evaluate an algorithm using a cross validation split
def evaluate_algorithm(dataset, algorithm, n_folds, *args):
folds = cross_validation_split(dataset, n_folds)
scores = list()
for fold in folds:
train_set = list(folds)
train_set.remove(fold)
train_set = sum(train_set, [])
test_set = list()
for row in fold:
row_copy = list(row)
test_set.append(row_copy)
row_copy[-1] = None
predicted = algorithm(train_set, test_set, *args)
actual = [row[-1] for row in fold]
accuracy = accuracy_metric(actual, predicted)
scores.append(accuracy)
return scores

參考:

隨機森林;
python實現隨機森林;
sklearn隨機森林實現;
tuning random forest’s parameters;
隨機森林python;
隨機森林聲納數據仿真;
GitHub決策樹;
kaggle random forest


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM