前言
現在,我們已經了解了如何建立索引和搜索數據了。
那么,是時候來探索背后的故事了!當數據傳遞到elasticsearch
后,到底發生了什么?
分析過程
當數據被發送到elasticsearch
后並加入到倒排索引之前,elasticsearch
會對該文檔的進行一系列的處理步驟:
- 字符過濾:使用字符過濾器轉變字符。
- 文本切分為分詞:將文本(檔)分為單個或多個分詞。
- 分詞過濾:使用分詞過濾器轉變每個分詞。
- 分詞索引:最終將分詞存儲在Lucene倒排索引中。
整體流程如下圖所示:
接下來,我們簡要的介紹elasticsearch
中的分析器、分詞器和分詞過濾器。它們配置簡單,靈活好用,我們可以通過不同的組合來獲取我們想要的分詞!
是的,無論多么復雜的分析過程,都是為了獲取更加人性化的分詞!
接下來,我們來看看其中,在整個分析過程的各個組件吧。
分析器
在elasticsearch中,一個分析器可以包括:
- 可選的字符過濾器
- 一個分詞器
- 0個或多個分詞過濾器
接下來簡要的介紹各內置分詞的大致情況。在介紹之前,為了方便演示。如果你已經按照之前的教程安裝了ik analysis
,現在請暫時將該插件移出plugins
目錄。
標准分析器:standard analyzer
標准分析器(standard analyzer):是elasticsearch的默認分析器,該分析器綜合了大多數歐洲語言來說合理的默認模塊,包括標准分詞器、標准分詞過濾器、小寫轉換分詞過濾器和停用詞分詞過濾器。
POST _analyze
{
"analyzer": "standard",
"text":"To be or not to be, That is a question ———— 莎士比亞"
}
分詞結果如下:
{
"tokens" : [
{
"token" : "to",
"start_offset" : 0,
"end_offset" : 2,
"type" : "<ALPHANUM>",
"position" : 0
},
{
"token" : "be",
"start_offset" : 3,
"end_offset" : 5,
"type" : "<ALPHANUM>",
"position" : 1
},
{
"token" : "or",
"start_offset" : 6,
"end_offset" : 8,
"type" : "<ALPHANUM>",
"position" : 2
},
{
"token" : "not",
"start_offset" : 9,
"end_offset" : 12,
"type" : "<ALPHANUM>",
"position" : 3
},
{
"token" : "to",
"start_offset" : 13,
"end_offset" : 15,
"type" : "<ALPHANUM>",
"position" : 4
},
{
"token" : "be",
"start_offset" : 16,
"end_offset" : 18,
"type" : "<ALPHANUM>",
"position" : 5
},
{
"token" : "that",
"start_offset" : 21,
"end_offset" : 25,
"type" : "<ALPHANUM>",
"position" : 6
},
{
"token" : "is",
"start_offset" : 26,
"end_offset" : 28,
"type" : "<ALPHANUM>",
"position" : 7
},
{
"token" : "a",
"start_offset" : 29,
"end_offset" : 30,
"type" : "<ALPHANUM>",
"position" : 8
},
{
"token" : "question",
"start_offset" : 31,
"end_offset" : 39,
"type" : "<ALPHANUM>",
"position" : 9
},
{
"token" : "莎",
"start_offset" : 45,
"end_offset" : 46,
"type" : "<IDEOGRAPHIC>",
"position" : 10
},
{
"token" : "士",
"start_offset" : 46,
"end_offset" : 47,
"type" : "<IDEOGRAPHIC>",
"position" : 11
},
{
"token" : "比",
"start_offset" : 47,
"end_offset" : 48,
"type" : "<IDEOGRAPHIC>",
"position" : 12
},
{
"token" : "亞",
"start_offset" : 48,
"end_offset" : 49,
"type" : "<IDEOGRAPHIC>",
"position" : 13
}
]
}
簡單分析器:simple analyzer
簡單分析器(simple analyzer):簡單分析器僅使用了小寫轉換分詞,這意味着在非字母處進行分詞,並將分詞自動轉換為小寫。這個分詞器對於亞種語言來說效果不佳,因為亞洲語言不是根據空白來分詞的,所以一般用於歐洲言中。
POST _analyze
{
"analyzer": "simple",
"text":"To be or not to be, That is a question ———— 莎士比亞"
}
分詞結果如下:
{
"tokens" : [
{
"token" : "to",
"start_offset" : 0,
"end_offset" : 2,
"type" : "word",
"position" : 0
},
{
"token" : "be",
"start_offset" : 3,
"end_offset" : 5,
"type" : "word",
"position" : 1
},
{
"token" : "or",
"start_offset" : 6,
"end_offset" : 8,
"type" : "word",
"position" : 2
},
{
"token" : "not",
"start_offset" : 9,
"end_offset" : 12,
"type" : "word",
"position" : 3
},
{
"token" : "to",
"start_offset" : 13,
"end_offset" : 15,
"type" : "word",
"position" : 4
},
{
"token" : "be",
"start_offset" : 16,
"end_offset" : 18,
"type" : "word",
"position" : 5
},
{
"token" : "that",
"start_offset" : 21,
"end_offset" : 25,
"type" : "word",
"position" : 6
},
{
"token" : "is",
"start_offset" : 26,
"end_offset" : 28,
"type" : "word",
"position" : 7
},
{
"token" : "a",
"start_offset" : 29,
"end_offset" : 30,
"type" : "word",
"position" : 8
},
{
"token" : "question",
"start_offset" : 31,
"end_offset" : 39,
"type" : "word",
"position" : 9
},
{
"token" : "莎士比亞",
"start_offset" : 45,
"end_offset" : 49,
"type" : "word",
"position" : 10
}
]
}
空白分析器:whitespace analyzer
空白(格)分析器(whitespace analyzer):這玩意兒只是根據空白將文本切分為若干分詞,真是有夠偷懶!
POST _analyze
{
"analyzer": "whitespace",
"text":"To be or not to be, That is a question ———— 莎士比亞"
}
分詞結果如下:
{
"tokens" : [
{
"token" : "To",
"start_offset" : 0,
"end_offset" : 2,
"type" : "word",
"position" : 0
},
{
"token" : "be",
"start_offset" : 3,
"end_offset" : 5,
"type" : "word",
"position" : 1
},
{
"token" : "or",
"start_offset" : 6,
"end_offset" : 8,
"type" : "word",
"position" : 2
},
{
"token" : "not",
"start_offset" : 9,
"end_offset" : 12,
"type" : "word",
"position" : 3
},
{
"token" : "to",
"start_offset" : 13,
"end_offset" : 15,
"type" : "word",
"position" : 4
},
{
"token" : "be,",
"start_offset" : 16,
"end_offset" : 19,
"type" : "word",
"position" : 5
},
{
"token" : "That",
"start_offset" : 21,
"end_offset" : 25,
"type" : "word",
"position" : 6
},
{
"token" : "is",
"start_offset" : 26,
"end_offset" : 28,
"type" : "word",
"position" : 7
},
{
"token" : "a",
"start_offset" : 29,
"end_offset" : 30,
"type" : "word",
"position" : 8
},
{
"token" : "question",
"start_offset" : 31,
"end_offset" : 39,
"type" : "word",
"position" : 9
},
{
"token" : "————",
"start_offset" : 40,
"end_offset" : 44,
"type" : "word",
"position" : 10
},
{
"token" : "莎士比亞",
"start_offset" : 45,
"end_offset" : 49,
"type" : "word",
"position" : 11
}
]
}
停用詞分析器:stop analyzer
停用詞分析(stop analyzer)和簡單分析器的行為很像,只是在分詞流中額外的過濾了停用詞。
POST _analyze
{
"analyzer": "stop",
"text":"To be or not to be, That is a question ———— 莎士比亞"
}
結果也很簡單:
{
"tokens" : [
{
"token" : "question",
"start_offset" : 31,
"end_offset" : 39,
"type" : "word",
"position" : 9
},
{
"token" : "莎士比亞",
"start_offset" : 45,
"end_offset" : 49,
"type" : "word",
"position" : 10
}
]
}
關鍵詞分析器:keyword analyzer
關鍵詞分析器(keyword analyzer)將整個字段當做單獨的分詞,如無必要,我們不在映射中使用關鍵詞分析器。
POST _analyze
{
"analyzer": "keyword",
"text":"To be or not to be, That is a question ———— 莎士比亞"
}
結果如下:
{
"tokens" : [
{
"token" : "To be or not to be, That is a question ———— 莎士比亞",
"start_offset" : 0,
"end_offset" : 49,
"type" : "word",
"position" : 0
}
]
}
說的一點沒錯,分析結果是將整段當做單獨的分詞。
模式分析器:pattern analyzer
模式分析器(pattern analyzer)允許我們指定一個分詞切分模式。但是通常更佳的方案是使用定制的分析器,組合現有的模式分詞器和所需要的分詞過濾器更加合適。
POST _analyze
{
"analyzer": "pattern",
"explain": false,
"text":"To be or not to be, That is a question ———— 莎士比亞"
}
結果如下:
{
"tokens" : [
{
"token" : "to",
"start_offset" : 0,
"end_offset" : 2,
"type" : "word",
"position" : 0
},
{
"token" : "be",
"start_offset" : 3,
"end_offset" : 5,
"type" : "word",
"position" : 1
},
{
"token" : "or",
"start_offset" : 6,
"end_offset" : 8,
"type" : "word",
"position" : 2
},
{
"token" : "not",
"start_offset" : 9,
"end_offset" : 12,
"type" : "word",
"position" : 3
},
{
"token" : "to",
"start_offset" : 13,
"end_offset" : 15,
"type" : "word",
"position" : 4
},
{
"token" : "be",
"start_offset" : 16,
"end_offset" : 18,
"type" : "word",
"position" : 5
},
{
"token" : "that",
"start_offset" : 21,
"end_offset" : 25,
"type" : "word",
"position" : 6
},
{
"token" : "is",
"start_offset" : 26,
"end_offset" : 28,
"type" : "word",
"position" : 7
},
{
"token" : "a",
"start_offset" : 29,
"end_offset" : 30,
"type" : "word",
"position" : 8
},
{
"token" : "question",
"start_offset" : 31,
"end_offset" : 39,
"type" : "word",
"position" : 9
}
]
}
我們來自定制一個模式分析器,比如我們寫匹配郵箱的正則。
PUT pattern_test
{
"settings": {
"analysis": {
"analyzer": {
"my_email_analyzer":{
"type":"pattern",
"pattern":"\\W|_",
"lowercase":true
}
}
}
}
}
上例中,我們在創建一條索引的時候,配置分析器為自定義的分析器。
需要注意的是,在json
字符串中,正則的斜杠需要轉義。
我們使用自定義的分析器來查詢。
POST pattern_test/_analyze
{
"analyzer": "my_email_analyzer",
"text": "John_Smith@foo-bar.com"
}
結果如下:
{
"tokens" : [
{
"token" : "john",
"start_offset" : 0,
"end_offset" : 4,
"type" : "word",
"position" : 0
},
{
"token" : "smith",
"start_offset" : 5,
"end_offset" : 10,
"type" : "word",
"position" : 1
},
{
"token" : "foo",
"start_offset" : 11,
"end_offset" : 14,
"type" : "word",
"position" : 2
},
{
"token" : "bar",
"start_offset" : 15,
"end_offset" : 18,
"type" : "word",
"position" : 3
},
{
"token" : "com",
"start_offset" : 19,
"end_offset" : 22,
"type" : "word",
"position" : 4
}
]
}
語言和多語言分析器:chinese
elasticsearch為很多世界流行語言提供良好的、簡單的、開箱即用的語言分析器集合:阿拉伯語、亞美尼亞語、巴斯克語、巴西語、保加利亞語、加泰羅尼亞語、中文、捷克語、丹麥、荷蘭語、英語、芬蘭語、法語、加里西亞語、德語、希臘語、北印度語、匈牙利語、印度尼西亞、愛爾蘭語、意大利語、日語、韓國語、庫爾德語、挪威語、波斯語、葡萄牙語、羅馬尼亞語、俄語、西班牙語、瑞典語、土耳其語和泰語。
我們可以指定其中之一的語言來指定特定的語言分析器,但必須是小寫的名字!如果你要分析的語言不在上述集合中,可能還需要搭配相應的插件支持。
POST _analyze
{
"analyzer": "chinese",
"text":"To be or not to be, That is a question ———— 莎士比亞"
}
結果如下:
{
"tokens" : [
{
"token" : "question",
"start_offset" : 31,
"end_offset" : 39,
"type" : "<ALPHANUM>",
"position" : 9
},
{
"token" : "莎",
"start_offset" : 45,
"end_offset" : 46,
"type" : "<IDEOGRAPHIC>",
"position" : 10
},
{
"token" : "士",
"start_offset" : 46,
"end_offset" : 47,
"type" : "<IDEOGRAPHIC>",
"position" : 11
},
{
"token" : "比",
"start_offset" : 47,
"end_offset" : 48,
"type" : "<IDEOGRAPHIC>",
"position" : 12
},
{
"token" : "亞",
"start_offset" : 48,
"end_offset" : 49,
"type" : "<IDEOGRAPHIC>",
"position" : 13
}
]
}
也可以是別語言:
POST _analyze
{
"analyzer": "french",
"text":"Je suis ton père"
}
POST _analyze
{
"analyzer": "german",
"text":"Ich bin dein vater"
}
雪球分析器:snowball analyzer
雪球分析器(snowball analyzer)除了使用標准的分詞和分詞過濾器(和標准分析器一樣)也是用了小寫分詞過濾器和停用詞過濾器,除此之外,它還是用了雪球詞干器對文本進行詞干提取。
POST _analyze
{
"analyzer": "snowball",
"text":"To be or not to be, That is a question ———— 莎士比亞"
}
結果如下:
{
"tokens" : [
{
"token" : "question",
"start_offset" : 31,
"end_offset" : 39,
"type" : "<ALPHANUM>",
"position" : 9
},
{
"token" : "莎",
"start_offset" : 45,
"end_offset" : 46,
"type" : "<IDEOGRAPHIC>",
"position" : 10
},
{
"token" : "士",
"start_offset" : 46,
"end_offset" : 47,
"type" : "<IDEOGRAPHIC>",
"position" : 11
},
{
"token" : "比",
"start_offset" : 47,
"end_offset" : 48,
"type" : "<IDEOGRAPHIC>",
"position" : 12
},
{
"token" : "亞",
"start_offset" : 48,
"end_offset" : 49,
"type" : "<IDEOGRAPHIC>",
"position" : 13
}
]
}
字符過濾器
字符過濾器在<charFilter>
屬性中定義,它是對字符流進行處理。字符過濾器種類不多。elasticearch只提供了三種字符過濾器:
- HTML字符過濾器(HTML Strip Char Filter)
- 映射字符過濾器(Mapping Char Filter)
- 模式替換過濾器(Pattern Replace Char Filter)
我們來分別看看都是怎么玩的吧!
HTML字符過濾器
HTML字符過濾器(HTML Strip Char Filter)從文本中去除HTML元素。
POST _analyze
{
"tokenizer": "keyword",
"char_filter": ["html_strip"],
"text":"<p>I'm so <b>happy</b>!</p>"
}
結果如下:
{
"tokens" : [
{
"token" : """
I'm so happy!
""",
"start_offset" : 0,
"end_offset" : 32,
"type" : "word",
"position" : 0
}
]
}
映射字符過濾器
映射字符過濾器(Mapping Char Filter)接收鍵值的映射,每當遇到與鍵相同的字符串時,它就用該鍵關聯的值替換它們。
PUT pattern_test4
{
"settings": {
"analysis": {
"analyzer": {
"my_analyzer":{
"tokenizer":"keyword",
"char_filter":["my_char_filter"]
}
},
"char_filter":{
"my_char_filter":{
"type":"mapping",
"mappings":["蒼井空 => 666","武藤蘭 => 888"]
}
}
}
}
}
上例中,我們自定義了一個分析器,其內的分詞器使用關鍵字分詞器,字符過濾器則是自定制的,將字符中的蒼井空替換為666,武藤蘭替換為888。
POST pattern_test4/_analyze
{
"analyzer": "my_analyzer",
"text": "蒼井空熱愛武藤蘭,可惜后來蒼井空結婚了"
}
結果如下:
{
"tokens" : [
{
"token" : "666熱愛888,可惜后來666結婚了",
"start_offset" : 0,
"end_offset" : 19,
"type" : "word",
"position" : 0
}
]
}
模式替換過濾器
模式替換過濾器(Pattern Replace Char Filter)使用正則表達式匹配並替換字符串中的字符。但要小心你寫的摳腳的正則表達式。因為這可能導致性能變慢!
PUT pattern_test5
{
"settings": {
"analysis": {
"analyzer": {
"my_analyzer": {
"tokenizer": "standard",
"char_filter": [
"my_char_filter"
]
}
},
"char_filter": {
"my_char_filter": {
"type": "pattern_replace",
"pattern": "(\\d+)-(?=\\d)",
"replacement": "$1_"
}
}
}
}
}
上例中,我們自定義了一個正則規則。
POST pattern_test5/_analyze
{
"analyzer": "my_analyzer",
"text": "My credit card is 123-456-789"
}
結果如下:
{
"tokens" : [
{
"token" : "My",
"start_offset" : 0,
"end_offset" : 2,
"type" : "<ALPHANUM>",
"position" : 0
},
{
"token" : "credit",
"start_offset" : 3,
"end_offset" : 9,
"type" : "<ALPHANUM>",
"position" : 1
},
{
"token" : "card",
"start_offset" : 10,
"end_offset" : 14,
"type" : "<ALPHANUM>",
"position" : 2
},
{
"token" : "is",
"start_offset" : 15,
"end_offset" : 17,
"type" : "<ALPHANUM>",
"position" : 3
},
{
"token" : "123_456_789",
"start_offset" : 18,
"end_offset" : 29,
"type" : "<NUM>",
"position" : 4
}
]
}
我們大致的了解elasticsearch分析處理數據的流程。但可以看到的是,我們極少地在例子中演示中文處理。因為elasticsearch內置的分析器處理起來中文不是很好。所以,后續會介紹一個重量級的插件就是elasticsearch analysis ik(一般習慣稱呼為ik分詞器)。
分詞器
由於elasticsearch內置了分析器,它同樣也包含了分詞器。分詞器,顧名思義,主要的操作是將文本字符串分解為小塊,而這些小塊這被稱為分詞token
。
標准分詞器:standard tokenizer
標准分詞器(standard tokenizer)是一個基於語法的分詞器,對於大多數歐洲語言來說還是不錯的,它同時還處理了Unicode文本的分詞,但分詞默認的最大長度是255字節,它也移除了逗號和句號這樣的標點符號。
POST _analyze
{
"tokenizer": "standard",
"text":"To be or not to be, That is a question ———— 莎士比亞"
}
結果如下:
{
"tokens" : [
{
"token" : "To",
"start_offset" : 0,
"end_offset" : 2,
"type" : "<ALPHANUM>",
"position" : 0
},
{
"token" : "be",
"start_offset" : 3,
"end_offset" : 5,
"type" : "<ALPHANUM>",
"position" : 1
},
{
"token" : "or",
"start_offset" : 6,
"end_offset" : 8,
"type" : "<ALPHANUM>",
"position" : 2
},
{
"token" : "not",
"start_offset" : 9,
"end_offset" : 12,
"type" : "<ALPHANUM>",
"position" : 3
},
{
"token" : "to",
"start_offset" : 13,
"end_offset" : 15,
"type" : "<ALPHANUM>",
"position" : 4
},
{
"token" : "be",
"start_offset" : 16,
"end_offset" : 18,
"type" : "<ALPHANUM>",
"position" : 5
},
{
"token" : "That",
"start_offset" : 21,
"end_offset" : 25,
"type" : "<ALPHANUM>",
"position" : 6
},
{
"token" : "is",
"start_offset" : 26,
"end_offset" : 28,
"type" : "<ALPHANUM>",
"position" : 7
},
{
"token" : "a",
"start_offset" : 29,
"end_offset" : 30,
"type" : "<ALPHANUM>",
"position" : 8
},
{
"token" : "question",
"start_offset" : 31,
"end_offset" : 39,
"type" : "<ALPHANUM>",
"position" : 9
},
{
"token" : "莎",
"start_offset" : 45,
"end_offset" : 46,
"type" : "<IDEOGRAPHIC>",
"position" : 10
},
{
"token" : "士",
"start_offset" : 46,
"end_offset" : 47,
"type" : "<IDEOGRAPHIC>",
"position" : 11
},
{
"token" : "比",
"start_offset" : 47,
"end_offset" : 48,
"type" : "<IDEOGRAPHIC>",
"position" : 12
},
{
"token" : "亞",
"start_offset" : 48,
"end_offset" : 49,
"type" : "<IDEOGRAPHIC>",
"position" : 13
}
]
}
關鍵詞分詞器:keyword tokenizer
關鍵詞分詞器(keyword tokenizer)是一種簡單的分詞器,將整個文本作為單個的分詞,提供給分詞過濾器,當你只想用分詞過濾器,而不做分詞操作時,它是不錯的選擇。
POST _analyze
{
"tokenizer": "keyword",
"text":"To be or not to be, That is a question ———— 莎士比亞"
}
結果如下:
{
"tokens" : [
{
"token" : "To be or not to be, That is a question ———— 莎士比亞",
"start_offset" : 0,
"end_offset" : 49,
"type" : "word",
"position" : 0
}
]
}
字母分詞器:letter tokenizer
字母分詞器(letter tokenizer)根據非字母的符號,將文本切分成分詞。
POST _analyze
{
"tokenizer": "letter",
"text":"To be or not to be, That is a question ———— 莎士比亞"
}
結果如下:
{
"tokens" : [
{
"token" : "To",
"start_offset" : 0,
"end_offset" : 2,
"type" : "word",
"position" : 0
},
{
"token" : "be",
"start_offset" : 3,
"end_offset" : 5,
"type" : "word",
"position" : 1
},
{
"token" : "or",
"start_offset" : 6,
"end_offset" : 8,
"type" : "word",
"position" : 2
},
{
"token" : "not",
"start_offset" : 9,
"end_offset" : 12,
"type" : "word",
"position" : 3
},
{
"token" : "to",
"start_offset" : 13,
"end_offset" : 15,
"type" : "word",
"position" : 4
},
{
"token" : "be",
"start_offset" : 16,
"end_offset" : 18,
"type" : "word",
"position" : 5
},
{
"token" : "That",
"start_offset" : 21,
"end_offset" : 25,
"type" : "word",
"position" : 6
},
{
"token" : "is",
"start_offset" : 26,
"end_offset" : 28,
"type" : "word",
"position" : 7
},
{
"token" : "a",
"start_offset" : 29,
"end_offset" : 30,
"type" : "word",
"position" : 8
},
{
"token" : "question",
"start_offset" : 31,
"end_offset" : 39,
"type" : "word",
"position" : 9
},
{
"token" : "莎士比亞",
"start_offset" : 45,
"end_offset" : 49,
"type" : "word",
"position" : 10
}
]
}
小寫分詞器:lowercase tokenizer
小寫分詞器(lowercase tokenizer)結合了常規的字母分詞器和小寫分詞過濾器(跟你想的一樣,就是將所有的分詞轉化為小寫)的行為。通過一個單獨的分詞器來實現的主要原因是,一次進行兩項操作會獲得更好的性能。
POST _analyze
{
"tokenizer": "lowercase",
"text":"To be or not to be, That is a question ———— 莎士比亞"
}
結果如下:
{
"tokens" : [
{
"token" : "to",
"start_offset" : 0,
"end_offset" : 2,
"type" : "word",
"position" : 0
},
{
"token" : "be",
"start_offset" : 3,
"end_offset" : 5,
"type" : "word",
"position" : 1
},
{
"token" : "or",
"start_offset" : 6,
"end_offset" : 8,
"type" : "word",
"position" : 2
},
{
"token" : "not",
"start_offset" : 9,
"end_offset" : 12,
"type" : "word",
"position" : 3
},
{
"token" : "to",
"start_offset" : 13,
"end_offset" : 15,
"type" : "word",
"position" : 4
},
{
"token" : "be",
"start_offset" : 16,
"end_offset" : 18,
"type" : "word",
"position" : 5
},
{
"token" : "that",
"start_offset" : 21,
"end_offset" : 25,
"type" : "word",
"position" : 6
},
{
"token" : "is",
"start_offset" : 26,
"end_offset" : 28,
"type" : "word",
"position" : 7
},
{
"token" : "a",
"start_offset" : 29,
"end_offset" : 30,
"type" : "word",
"position" : 8
},
{
"token" : "question",
"start_offset" : 31,
"end_offset" : 39,
"type" : "word",
"position" : 9
},
{
"token" : "莎士比亞",
"start_offset" : 45,
"end_offset" : 49,
"type" : "word",
"position" : 10
}
]
}
空白分詞器:whitespace tokenizer
空白分詞器(whitespace tokenizer)通過空白來分隔不同的分詞,空白包括空格、制表符、換行等。但是,我們需要注意的是,空白分詞器不會刪除任何標點符號。
POST _analyze
{
"tokenizer": "whitespace",
"text":"To be or not to be, That is a question ———— 莎士比亞"
}
結果如下:
{
"tokens" : [
{
"token" : "To",
"start_offset" : 0,
"end_offset" : 2,
"type" : "word",
"position" : 0
},
{
"token" : "be",
"start_offset" : 3,
"end_offset" : 5,
"type" : "word",
"position" : 1
},
{
"token" : "or",
"start_offset" : 6,
"end_offset" : 8,
"type" : "word",
"position" : 2
},
{
"token" : "not",
"start_offset" : 9,
"end_offset" : 12,
"type" : "word",
"position" : 3
},
{
"token" : "to",
"start_offset" : 13,
"end_offset" : 15,
"type" : "word",
"position" : 4
},
{
"token" : "be,",
"start_offset" : 16,
"end_offset" : 19,
"type" : "word",
"position" : 5
},
{
"token" : "That",
"start_offset" : 21,
"end_offset" : 25,
"type" : "word",
"position" : 6
},
{
"token" : "is",
"start_offset" : 26,
"end_offset" : 28,
"type" : "word",
"position" : 7
},
{
"token" : "a",
"start_offset" : 29,
"end_offset" : 30,
"type" : "word",
"position" : 8
},
{
"token" : "question",
"start_offset" : 31,
"end_offset" : 39,
"type" : "word",
"position" : 9
},
{
"token" : "————",
"start_offset" : 40,
"end_offset" : 44,
"type" : "word",
"position" : 10
},
{
"token" : "莎士比亞",
"start_offset" : 45,
"end_offset" : 49,
"type" : "word",
"position" : 11
}
]
}
模式分詞器:pattern tokenizer
模式分詞器(pattern tokenizer)允許指定一個任意的模式,將文本切分為分詞。
POST _analyze
{
"tokenizer": "pattern",
"text":"To be or not to be, That is a question ———— 莎士比亞"
}
現在讓我們手動定制一個以逗號分隔的分詞器。
PUT pattern_test2
{
"settings": {
"analysis": {
"analyzer": {
"my_analyzer":{
"tokenizer":"my_tokenizer"
}
},
"tokenizer": {
"my_tokenizer":{
"type":"pattern",
"pattern":","
}
}
}
}
}
上例中,在settings下的自定義分析器my_analyzer中,自定義的模式分詞器名叫my_tokenizer;在與自定義分析器同級,為新建的自定義模式分詞器設置一些屬性,比如以逗號分隔。
POST pattern_test2/_analyze
{
"tokenizer": "my_tokenizer",
"text":"To be or not to be, That is a question ———— 莎士比亞"
}
結果如下:
{
"tokens" : [
{
"token" : "To be or not to be",
"start_offset" : 0,
"end_offset" : 18,
"type" : "word",
"position" : 0
},
{
"token" : " That is a question ———— 莎士比亞",
"start_offset" : 19,
"end_offset" : 49,
"type" : "word",
"position" : 1
}
]
}
根據結果可以看到,文檔被逗號分割為兩部分。
UAX URL電子郵件分詞器:UAX RUL email tokenizer
在處理單個的英文單詞的情況下,標准分詞器是個非常好的選擇,但是現在很多的網站以網址或電子郵件作為結尾,比如我們現在有這樣的一個文本:
作者:張開
來源:未知
原文:https://www.cnblogs.com/Neeo/articles/10402742.html
郵箱:xxxxxxx@xx.com
版權聲明:本文為博主原創文章,轉載請附上博文鏈接!
現在讓我們使用標准分詞器查看一下:
POST _analyze
{
"tokenizer": "standard",
"text":"作者:張開來源:未知原文:https://www.cnblogs.com/Neeo/articles/10402742.html郵箱:xxxxxxx@xx.com版權聲明:本文為博主原創文章,轉載請附上博文鏈接!"
}
結果很長:
{
"tokens" : [
{
"token" : "作",
"start_offset" : 0,
"end_offset" : 1,
"type" : "<IDEOGRAPHIC>",
"position" : 0
},
{
"token" : "者",
"start_offset" : 1,
"end_offset" : 2,
"type" : "<IDEOGRAPHIC>",
"position" : 1
},
{
"token" : "張",
"start_offset" : 3,
"end_offset" : 4,
"type" : "<IDEOGRAPHIC>",
"position" : 2
},
{
"token" : "開",
"start_offset" : 4,
"end_offset" : 5,
"type" : "<IDEOGRAPHIC>",
"position" : 3
},
{
"token" : "來",
"start_offset" : 5,
"end_offset" : 6,
"type" : "<IDEOGRAPHIC>",
"position" : 4
},
{
"token" : "源",
"start_offset" : 6,
"end_offset" : 7,
"type" : "<IDEOGRAPHIC>",
"position" : 5
},
{
"token" : "未",
"start_offset" : 8,
"end_offset" : 9,
"type" : "<IDEOGRAPHIC>",
"position" : 6
},
{
"token" : "知",
"start_offset" : 9,
"end_offset" : 10,
"type" : "<IDEOGRAPHIC>",
"position" : 7
},
{
"token" : "原",
"start_offset" : 10,
"end_offset" : 11,
"type" : "<IDEOGRAPHIC>",
"position" : 8
},
{
"token" : "文",
"start_offset" : 11,
"end_offset" : 12,
"type" : "<IDEOGRAPHIC>",
"position" : 9
},
{
"token" : "https",
"start_offset" : 13,
"end_offset" : 18,
"type" : "<ALPHANUM>",
"position" : 10
},
{
"token" : "www.cnblogs.com",
"start_offset" : 21,
"end_offset" : 36,
"type" : "<ALPHANUM>",
"position" : 11
},
{
"token" : "Neeo",
"start_offset" : 37,
"end_offset" : 41,
"type" : "<ALPHANUM>",
"position" : 12
},
{
"token" : "articles",
"start_offset" : 42,
"end_offset" : 50,
"type" : "<ALPHANUM>",
"position" : 13
},
{
"token" : "10402742",
"start_offset" : 51,
"end_offset" : 59,
"type" : "<NUM>",
"position" : 14
},
{
"token" : "html",
"start_offset" : 60,
"end_offset" : 64,
"type" : "<ALPHANUM>",
"position" : 15
},
{
"token" : "郵",
"start_offset" : 64,
"end_offset" : 65,
"type" : "<IDEOGRAPHIC>",
"position" : 16
},
{
"token" : "箱",
"start_offset" : 65,
"end_offset" : 66,
"type" : "<IDEOGRAPHIC>",
"position" : 17
},
{
"token" : "xxxxxxx",
"start_offset" : 67,
"end_offset" : 74,
"type" : "<ALPHANUM>",
"position" : 18
},
{
"token" : "xx.com",
"start_offset" : 75,
"end_offset" : 81,
"type" : "<ALPHANUM>",
"position" : 19
},
{
"token" : "版",
"start_offset" : 81,
"end_offset" : 82,
"type" : "<IDEOGRAPHIC>",
"position" : 20
},
{
"token" : "權",
"start_offset" : 82,
"end_offset" : 83,
"type" : "<IDEOGRAPHIC>",
"position" : 21
},
{
"token" : "聲",
"start_offset" : 83,
"end_offset" : 84,
"type" : "<IDEOGRAPHIC>",
"position" : 22
},
{
"token" : "明",
"start_offset" : 84,
"end_offset" : 85,
"type" : "<IDEOGRAPHIC>",
"position" : 23
},
{
"token" : "本",
"start_offset" : 86,
"end_offset" : 87,
"type" : "<IDEOGRAPHIC>",
"position" : 24
},
{
"token" : "文",
"start_offset" : 87,
"end_offset" : 88,
"type" : "<IDEOGRAPHIC>",
"position" : 25
},
{
"token" : "為",
"start_offset" : 88,
"end_offset" : 89,
"type" : "<IDEOGRAPHIC>",
"position" : 26
},
{
"token" : "博",
"start_offset" : 89,
"end_offset" : 90,
"type" : "<IDEOGRAPHIC>",
"position" : 27
},
{
"token" : "主",
"start_offset" : 90,
"end_offset" : 91,
"type" : "<IDEOGRAPHIC>",
"position" : 28
},
{
"token" : "原",
"start_offset" : 91,
"end_offset" : 92,
"type" : "<IDEOGRAPHIC>",
"position" : 29
},
{
"token" : "創",
"start_offset" : 92,
"end_offset" : 93,
"type" : "<IDEOGRAPHIC>",
"position" : 30
},
{
"token" : "文",
"start_offset" : 93,
"end_offset" : 94,
"type" : "<IDEOGRAPHIC>",
"position" : 31
},
{
"token" : "章",
"start_offset" : 94,
"end_offset" : 95,
"type" : "<IDEOGRAPHIC>",
"position" : 32
},
{
"token" : "轉",
"start_offset" : 96,
"end_offset" : 97,
"type" : "<IDEOGRAPHIC>",
"position" : 33
},
{
"token" : "載",
"start_offset" : 97,
"end_offset" : 98,
"type" : "<IDEOGRAPHIC>",
"position" : 34
},
{
"token" : "請",
"start_offset" : 98,
"end_offset" : 99,
"type" : "<IDEOGRAPHIC>",
"position" : 35
},
{
"token" : "附",
"start_offset" : 99,
"end_offset" : 100,
"type" : "<IDEOGRAPHIC>",
"position" : 36
},
{
"token" : "上",
"start_offset" : 100,
"end_offset" : 101,
"type" : "<IDEOGRAPHIC>",
"position" : 37
},
{
"token" : "博",
"start_offset" : 101,
"end_offset" : 102,
"type" : "<IDEOGRAPHIC>",
"position" : 38
},
{
"token" : "文",
"start_offset" : 102,
"end_offset" : 103,
"type" : "<IDEOGRAPHIC>",
"position" : 39
},
{
"token" : "鏈",
"start_offset" : 103,
"end_offset" : 104,
"type" : "<IDEOGRAPHIC>",
"position" : 40
},
{
"token" : "接",
"start_offset" : 104,
"end_offset" : 105,
"type" : "<IDEOGRAPHIC>",
"position" : 41
}
]
}
無論如何,這個結果不符合我們的預期,因為把我們的郵箱和網址分的亂七八糟!那么針對這種情況,我們應該使用UAX URL電子郵件分詞器(UAX RUL email tokenizer),該分詞器將電子郵件和URL都作為單獨的分詞進行保留。
POST _analyze
{
"tokenizer": "uax_url_email",
"text":"作者:張開來源:未知原文:https://www.cnblogs.com/Neeo/articles/10402742.html郵箱:xxxxxxx@xx.com版權聲明:本文為博主原創文章,轉載請附上博文鏈接!"
}
結果如下:
{
"tokens" : [
{
"token" : "作",
"start_offset" : 0,
"end_offset" : 1,
"type" : "<IDEOGRAPHIC>",
"position" : 0
},
{
"token" : "者",
"start_offset" : 1,
"end_offset" : 2,
"type" : "<IDEOGRAPHIC>",
"position" : 1
},
{
"token" : "張",
"start_offset" : 3,
"end_offset" : 4,
"type" : "<IDEOGRAPHIC>",
"position" : 2
},
{
"token" : "開",
"start_offset" : 4,
"end_offset" : 5,
"type" : "<IDEOGRAPHIC>",
"position" : 3
},
{
"token" : "來",
"start_offset" : 5,
"end_offset" : 6,
"type" : "<IDEOGRAPHIC>",
"position" : 4
},
{
"token" : "源",
"start_offset" : 6,
"end_offset" : 7,
"type" : "<IDEOGRAPHIC>",
"position" : 5
},
{
"token" : "未",
"start_offset" : 8,
"end_offset" : 9,
"type" : "<IDEOGRAPHIC>",
"position" : 6
},
{
"token" : "知",
"start_offset" : 9,
"end_offset" : 10,
"type" : "<IDEOGRAPHIC>",
"position" : 7
},
{
"token" : "原",
"start_offset" : 10,
"end_offset" : 11,
"type" : "<IDEOGRAPHIC>",
"position" : 8
},
{
"token" : "文",
"start_offset" : 11,
"end_offset" : 12,
"type" : "<IDEOGRAPHIC>",
"position" : 9
},
{
"token" : "https://www.cnblogs.com/Neeo/articles/10402742.html",
"start_offset" : 13,
"end_offset" : 64,
"type" : "<URL>",
"position" : 10
},
{
"token" : "郵",
"start_offset" : 64,
"end_offset" : 65,
"type" : "<IDEOGRAPHIC>",
"position" : 11
},
{
"token" : "箱",
"start_offset" : 65,
"end_offset" : 66,
"type" : "<IDEOGRAPHIC>",
"position" : 12
},
{
"token" : "xxxxxxx@xx.com",
"start_offset" : 67,
"end_offset" : 81,
"type" : "<EMAIL>",
"position" : 13
},
{
"token" : "版",
"start_offset" : 81,
"end_offset" : 82,
"type" : "<IDEOGRAPHIC>",
"position" : 14
},
{
"token" : "權",
"start_offset" : 82,
"end_offset" : 83,
"type" : "<IDEOGRAPHIC>",
"position" : 15
},
{
"token" : "聲",
"start_offset" : 83,
"end_offset" : 84,
"type" : "<IDEOGRAPHIC>",
"position" : 16
},
{
"token" : "明",
"start_offset" : 84,
"end_offset" : 85,
"type" : "<IDEOGRAPHIC>",
"position" : 17
},
{
"token" : "本",
"start_offset" : 86,
"end_offset" : 87,
"type" : "<IDEOGRAPHIC>",
"position" : 18
},
{
"token" : "文",
"start_offset" : 87,
"end_offset" : 88,
"type" : "<IDEOGRAPHIC>",
"position" : 19
},
{
"token" : "為",
"start_offset" : 88,
"end_offset" : 89,
"type" : "<IDEOGRAPHIC>",
"position" : 20
},
{
"token" : "博",
"start_offset" : 89,
"end_offset" : 90,
"type" : "<IDEOGRAPHIC>",
"position" : 21
},
{
"token" : "主",
"start_offset" : 90,
"end_offset" : 91,
"type" : "<IDEOGRAPHIC>",
"position" : 22
},
{
"token" : "原",
"start_offset" : 91,
"end_offset" : 92,
"type" : "<IDEOGRAPHIC>",
"position" : 23
},
{
"token" : "創",
"start_offset" : 92,
"end_offset" : 93,
"type" : "<IDEOGRAPHIC>",
"position" : 24
},
{
"token" : "文",
"start_offset" : 93,
"end_offset" : 94,
"type" : "<IDEOGRAPHIC>",
"position" : 25
},
{
"token" : "章",
"start_offset" : 94,
"end_offset" : 95,
"type" : "<IDEOGRAPHIC>",
"position" : 26
},
{
"token" : "轉",
"start_offset" : 96,
"end_offset" : 97,
"type" : "<IDEOGRAPHIC>",
"position" : 27
},
{
"token" : "載",
"start_offset" : 97,
"end_offset" : 98,
"type" : "<IDEOGRAPHIC>",
"position" : 28
},
{
"token" : "請",
"start_offset" : 98,
"end_offset" : 99,
"type" : "<IDEOGRAPHIC>",
"position" : 29
},
{
"token" : "附",
"start_offset" : 99,
"end_offset" : 100,
"type" : "<IDEOGRAPHIC>",
"position" : 30
},
{
"token" : "上",
"start_offset" : 100,
"end_offset" : 101,
"type" : "<IDEOGRAPHIC>",
"position" : 31
},
{
"token" : "博",
"start_offset" : 101,
"end_offset" : 102,
"type" : "<IDEOGRAPHIC>",
"position" : 32
},
{
"token" : "文",
"start_offset" : 102,
"end_offset" : 103,
"type" : "<IDEOGRAPHIC>",
"position" : 33
},
{
"token" : "鏈",
"start_offset" : 103,
"end_offset" : 104,
"type" : "<IDEOGRAPHIC>",
"position" : 34
},
{
"token" : "接",
"start_offset" : 104,
"end_offset" : 105,
"type" : "<IDEOGRAPHIC>",
"position" : 35
}
]
}
路徑層次分詞器:path hierarchy tokenizer
路徑層次分詞器(path hierarchy tokenizer)允許以特定的方式索引文件系統的路徑,這樣在搜索時,共享同樣路徑的文件將被作為結果返回。
POST _analyze
{
"tokenizer": "path_hierarchy",
"text":"/usr/local/python/python2.7"
}
返回結果如下:
{
"tokens" : [
{
"token" : "/usr",
"start_offset" : 0,
"end_offset" : 4,
"type" : "word",
"position" : 0
},
{
"token" : "/usr/local",
"start_offset" : 0,
"end_offset" : 10,
"type" : "word",
"position" : 0
},
{
"token" : "/usr/local/python",
"start_offset" : 0,
"end_offset" : 17,
"type" : "word",
"position" : 0
},
{
"token" : "/usr/local/python/python2.7",
"start_offset" : 0,
"end_offset" : 27,
"type" : "word",
"position" : 0
}
]
}
分詞過濾器
asticsearch內置很多(真是變態多啊!但一般用不到,美滋滋!!!)的分詞過濾器。其中包含分詞過濾器和字符過濾器。
常見分詞過濾器
這里僅列舉幾個常見的分詞過濾器(token filter)包括:
- 標准分詞過濾器(Standard Token Filter)在6.5.0版本棄用。此篩選器已被棄用,將在下一個主要版本中刪除。在之前的版本中其實也沒干啥,甚至在更老版本的
Lucene
中,它用於去除單詞結尾的s
字符,還有不必要的句點字符,但是現在, 連這些小功能都被其他的分詞器和分詞過濾器順手干了,真可憐! - ASCII折疊分詞過濾器(ASCII Folding Token Filter)將前127個ASCII字符(基本拉丁語的Unicode塊)中不包含的字母、數字和符號Unicode字符轉換為對應的ASCII字符(如果存在的話)。
- 扁平圖形分詞過濾器(Flatten Graph Token Filter)接受任意圖形標記流。例如由同義詞圖形標記過濾器生成的標記流,並將其展平為適合索引的單個線性標記鏈。這是一個有損的過程,因為單獨的側路徑被壓扁在彼此之上,但是如果在索引期間使用圖形令牌流是必要的,因為Lucene索引當前不能表示圖形。 出於這個原因,最好只在搜索時應用圖形分析器,因為這樣可以保留完整的圖形結構,並為鄰近查詢提供正確的匹配。該功能在Lucene中為實驗性功能。
- 長度標記過濾器(Length Token Filter)會移除分詞流中太長或者太短的標記,它是可配置的,我們可以在settings中設置。
- 小寫分詞過濾器(Lowercase Token Filter)將分詞規范化為小寫,它通過
language
參數支持希臘語、愛爾蘭語和土耳其語小寫標記過濾器。 - 大寫分詞過濾器(Uppercase Token Filter)將分詞規范為大寫。
其余分詞過濾器不一一列舉。詳情參見官網。
自定義分詞過濾器
接下來我們簡單的來學習自定義兩個分詞過濾器。首先是長度分詞過濾器。
PUT pattern_test3
{
"settings": {
"analysis": {
"filter": {
"my_test_length":{
"type":"length",
"max":8,
"min":2
}
}
}
}
}
上例中,我們自定義了一個長度過濾器,過濾掉長度大於8和小於2的分詞。
需要補充的是,max參數表示最大分詞長度。默認為Integer.MAX_VALUE,就是2147483647(\(2^31-1\)),而min則表示最小長度,默認為0。
POST pattern_test3/_analyze
{
"tokenizer": "standard",
"filter": ["my_test_length"],
"text":"a Small word and a longerword"
}
結果如下:
{
"tokens" : [
{
"token" : "Small",
"start_offset" : 2,
"end_offset" : 7,
"type" : "<ALPHANUM>",
"position" : 1
},
{
"token" : "word",
"start_offset" : 8,
"end_offset" : 12,
"type" : "<ALPHANUM>",
"position" : 2
},
{
"token" : "and",
"start_offset" : 13,
"end_offset" : 16,
"type" : "<ALPHANUM>",
"position" : 3
}
]
}
自定義小寫分詞過濾器
自定義一個小寫分詞過濾器,過濾希臘文:
PUT lowercase_example
{
"settings": {
"analysis": {
"analyzer": {
"standard_lowercase_example": {
"type": "custom",
"tokenizer": "standard",
"filter": ["lowercase"]
},
"greek_lowercase_example": {
"type": "custom",
"tokenizer": "standard",
"filter": ["greek_lowercase"]
}
},
"filter": {
"greek_lowercase": {
"type": "lowercase",
"language": "greek"
}
}
}
}
}
過濾內容是:
POST lowercase_example/_analyze
{
"tokenizer": "standard",
"filter": ["greek_lowercase"],
"text":"Ένα φίλτρο διακριτικού τύπου πεζά s ομαλοποιεί το κείμενο διακριτικού σε χαμηλότερη θήκη"
}
結果如下:
{
"tokens" : [
{
"token" : "ενα",
"start_offset" : 0,
"end_offset" : 3,
"type" : "<ALPHANUM>",
"position" : 0
},
{
"token" : "φιλτρο",
"start_offset" : 4,
"end_offset" : 10,
"type" : "<ALPHANUM>",
"position" : 1
},
{
"token" : "διακριτικου",
"start_offset" : 11,
"end_offset" : 22,
"type" : "<ALPHANUM>",
"position" : 2
},
{
"token" : "τυπου",
"start_offset" : 23,
"end_offset" : 28,
"type" : "<ALPHANUM>",
"position" : 3
},
{
"token" : "πεζα",
"start_offset" : 29,
"end_offset" : 33,
"type" : "<ALPHANUM>",
"position" : 4
},
{
"token" : "s",
"start_offset" : 34,
"end_offset" : 35,
"type" : "<ALPHANUM>",
"position" : 5
},
{
"token" : "ομαλοποιει",
"start_offset" : 36,
"end_offset" : 46,
"type" : "<ALPHANUM>",
"position" : 6
},
{
"token" : "το",
"start_offset" : 47,
"end_offset" : 49,
"type" : "<ALPHANUM>",
"position" : 7
},
{
"token" : "κειμενο",
"start_offset" : 50,
"end_offset" : 57,
"type" : "<ALPHANUM>",
"position" : 8
},
{
"token" : "διακριτικου",
"start_offset" : 58,
"end_offset" : 69,
"type" : "<ALPHANUM>",
"position" : 9
},
{
"token" : "σε",
"start_offset" : 70,
"end_offset" : 72,
"type" : "<ALPHANUM>",
"position" : 10
},
{
"token" : "χαμηλοτερη",
"start_offset" : 73,
"end_offset" : 83,
"type" : "<ALPHANUM>",
"position" : 11
},
{
"token" : "θηκη",
"start_offset" : 84,
"end_offset" : 88,
"type" : "<ALPHANUM>",
"position" : 12
}
]
}
多個分詞過濾器
除此之外,我們可以使用多個分詞過濾器。例如我們在使用長度過濾器時,可以同時使用小寫分詞過濾器或者更多。
POST _analyze
{
"tokenizer": "standard",
"filter": ["length","lowercase"],
"text":"a Small word and a longerword"
}
上例中,我們用列表來管理多個分詞過濾器。
結果如下:
{
"tokens" : [
{
"token" : "a",
"start_offset" : 0,
"end_offset" : 1,
"type" : "<ALPHANUM>",
"position" : 0
},
{
"token" : "small",
"start_offset" : 2,
"end_offset" : 7,
"type" : "<ALPHANUM>",
"position" : 1
},
{
"token" : "word",
"start_offset" : 8,
"end_offset" : 12,
"type" : "<ALPHANUM>",
"position" : 2
},
{
"token" : "and",
"start_offset" : 13,
"end_offset" : 16,
"type" : "<ALPHANUM>",
"position" : 3
},
{
"token" : "a",
"start_offset" : 17,
"end_offset" : 18,
"type" : "<ALPHANUM>",
"position" : 4
},
{
"token" : "longerword",
"start_offset" : 19,
"end_offset" : 29,
"type" : "<ALPHANUM>",
"position" : 5
}
]
}
歡迎斧正,that's all see also:[elasticsearch analyzer](https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-analyzers.html) | [elasticsearch tokenizers](https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenizers.html) | [Standard Token Filter](https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-standard-tokenfilter.html) | [ASCII Folding Token Filter](https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-asciifolding-tokenfilter.html) | [Flatten Graph Token Filter](https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-flatten-graph-tokenfilter.html) | [Length Token Filter](https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-length-tokenfilter.html) | [Lowercase Token Filter](https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-lowercase-tokenfilter.html) | [Uppercase Token Filter](https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-uppercase-tokenfilter.html) | [NGram Token Filter](https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-ngram-tokenfilter.html) | [Edge NGram Token Filter](https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-edgengram-tokenfilter.html#analysis-edgengram-tokenfilter) | [Porter Stem Token Filter](https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-porterstem-tokenfilter.html) | [Shingle Token Filter](https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-shingle-tokenfilter.html) | [Stop Token Filter](https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-stop-tokenfilter.html) | [Word Delimiter Token Filter](https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-stop-tokenfilter.html) | [Word Delimiter Graph Token Filter](https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-word-delimiter-graph-tokenfilter.html) | [Multiplexer Token Filter](https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-multiplexer-tokenfilter.html) | [Conditional Token Filter](https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-condition-tokenfilter.html) | [Predicate Token Filter Script](https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-predicatefilter-tokenfilter.html) | [Stemmer Token Filter](https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-stemmer-tokenfilter.html) | [Stemmer Override Token Filter](https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-stemmer-override-tokenfilter.html) | [Keyword Marker Token Filter](https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-keyword-marker-tokenfilter.html) | [Keyword Repeat Token Filter](https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-keyword-repeat-tokenfilter.html) | [KStem Token Filter](https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-kstem-tokenfilter.html) | [Snowball Token Filter](https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-snowball-tokenfilter.html) | [Phonetic Token Filter](https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-phonetic-tokenfilter.html) | [Synonym Token Filter](https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-synonym-tokenfilter.html) | [Parsing synonym files](https://www.elastic.co/guide/en/elasticsearch/reference/current/_parsing_synonym_files.html) | [Synonym Graph Token Filter](https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-synonym-graph-tokenfilter.html) | [Parsing synonym files](https://www.elastic.co/guide/en/elasticsearch/reference/current/_parsing_synonym_files_2.html) | [Compound Word Token Filters](https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-compound-word-tokenfilter.html) | [Reverse Token Filter](https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-reverse-tokenfilter.html) | [Elision Token Filter](https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-elision-tokenfilter.html) | [Truncate Token Filter](https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-truncate-tokenfilter.html) | [Unique Token Filter](https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-unique-tokenfilter.html) | [Pattern Capture Token Filter](https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-pattern-capture-tokenfilter.html) | [Pattern Replace Token Filter](https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-pattern_replace-tokenfilter.html) | [Trim Token Filter](https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-trim-tokenfilter.html) | [Limit Token Count Token Filter](https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-limit-token-count-tokenfilter.html) | [Hunspell Token Filter](https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-hunspell-tokenfilter.html) | [Common Grams Token Filter](https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-common-grams-tokenfilter.html) | [Normalization Token Filter](https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-normalization-tokenfilter.html) | [CJK Width Token Filter](https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-cjk-width-tokenfilter.html) | [CJK Bigram Token Filter](https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-cjk-bigram-tokenfilter.html) | [Delimited Payload Token Filter](https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-delimited-payload-tokenfilter.html) | [Keep Words Token Filter](https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-keep-words-tokenfilter.html) | [Keep Types Token Filter](https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-keep-types-tokenfilter.html) | [Exclude mode settings example](https://www.elastic.co/guide/en/elasticsearch/reference/current/_exclude_mode_settings_example.html) | [Classic Token Filter](https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-classic-tokenfilter.html) | [Apostrophe Token Filter](https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-apostrophe-tokenfilter.html) | [Decimal Digit Token Filter](https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-decimal-digit-tokenfilter.html) | [Fingerprint Token Filter](https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-fingerprint-tokenfilter.html) | [Minhash Token Filter](https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-minhash-tokenfilter.html) | [Remove Duplicates Token Filter](https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-remove-duplicates-tokenfilter.html) | [Character Filters](https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-charfilters.html) | [HTML Strip Char Filter](https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-htmlstrip-charfilter.html) | [Mapping Char Filter](https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-mapping-charfilter.html) | [Pattern Replace Char Filter](https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-pattern-replace-charfilter.html)