A組C/C++下載鏈接:https://www.lanzous.com/i3jmx4b
B組C/C++下載鏈接:https://www.lanzous.com/i3jf1qj
B組JAVA下載鏈接:https://www.lanzous.com/i3jmxli
據官方消息:軟件類這周三會盡量出成績,最遲星期四。
第一二題,基本nc題,代碼其實都不需要了。(我的答案僅供參考,畢竟一周后才出結果。祝願各位都能有個好的成績!!!)
A題 組隊
490
B題 年號字串
BYQ
C題 數列求值
【問題描述】
給定數列1,1,1,3,5,9,17,..,從第4項開始,每項都是前3項的和。求第20190324項的最后4位數字。
【答案提交】
這是一道結果填空的題,你只需要算出結果后提交即可。
本題的結果為一個4位整數(提示:答案的千位不為0),在提交答案時只填寫這個整數,填寫多余的內容將無法得分。
#include <bits/stdc++.h> #define N 20190324 using namespace std; static int x = []() {std::ios::sync_with_stdio(false); cin.tie(0); return 0; }(); int main() { vector<int> vec(N, 1); for (int i = 3; i < vec.size(); ++i) { vec[i] = vec[i - 1] + vec[i - 2] + vec[i - 3]; if (vec[i] > 9999) { vec[i] = vec[i] - (vec[i] / 10000) * 10000;//只保留后四位,那我們就以10000為1個單位進行減法,直到小於10000。 } } cout << vec[vec.size() - 1]; return 0; }
答案:4659
D題 數的分解
【問題描述】
把2019分解成3個各不相同的正整數之和,並且要求每個正整數都不包含數字2和4,一共有多少種不同的分解方法?.
注意交換3個整數的順序被視為同一種方法,例如1000-1001-18和1001+1000+18 被視 同一種。
哎,這是一個正整數,得從1開始,並且要想不重復,那么i,j,k三個數之間要有 i , j = i + 1, k = j + 1
#include <bits/stdc++.h> using namespace std;bool func(int n) { bool flag = true; while (1) { if (n < 10) { if (n == 2 || n == 4) { flag = false; break; } break; } int m = n % 10; n = n / 10; if (m == 2 || m == 4) { flag = false; break; } } return flag; } int main() { int ncount = 0; for (int i = 1; i < 2019; ++i) { for (int j = i + 1; j < 2019; ++j) { for (int k = j + 1; k < 2019; ++k) { if (func(i) && func(j) && func(k) && i + k + j == 2019) { ncount++; } } } } cout << ncount << endl; return 0; }
答案:40785
E題 迷宮
【問題描述】
下圖給出了一個迷宮的平面圖,其中標記為 1 的為障礙,標記為 0 的為可以通行的地方。
010000
000100
001001
110000
迷宮的入口為左上角,出口為右下角,在迷宮中,只能從一個位置走到這個它的上、下、左、右四個方向之一。
對於上面的迷宮,從入口開始,可以按DRRURRDDDR 的順序通過迷宮,一共 10 步。其中 D、U、L、R 分別表示向下、向上、向左、向右走。
對於下面這個更復雜的迷宮(30 行 50 列) ,請找出一種通過迷宮的方式,其使用的步數最少,在步數最少的前提下,請找出字典序最小的一個作為答案。請注意在字典序中D<L<R<U。(如果你把以下文字復制到文本文件中,
請務必檢查復制的內容是否與文檔中的一致。在試題目錄下有一個文件 maze.txt,內容與下面的文本相同)
01010101001011001001010110010110100100001000101010
00001000100000101010010000100000001001100110100101
01111011010010001000001101001011100011000000010000
01000000001010100011010000101000001010101011001011
00011111000000101000010010100010100000101100000000
11001000110101000010101100011010011010101011110111
00011011010101001001001010000001000101001110000000
10100000101000100110101010111110011000010000111010
00111000001010100001100010000001000101001100001001
11000110100001110010001001010101010101010001101000
00010000100100000101001010101110100010101010000101
11100100101001001000010000010101010100100100010100
00000010000000101011001111010001100000101010100011
10101010011100001000011000010110011110110100001000
10101010100001101010100101000010100000111011101001
10000000101100010000101100101101001011100000000100
10101001000000010100100001000100000100011110101001
00101001010101101001010100011010101101110000110101
11001010000100001100000010100101000001000111000010
00001000110000110101101000000100101001001000011101
10100101000101000000001110110010110101101010100001
00101000010000110101010000100010001001000100010101
10100001000110010001000010101001010101011111010010
00000100101000000110010100101001000001000000000010
11010000001001110111001001000011101001011011101000
00000110100010001000100000001000011101000000110011
10101000101000100010001111100010101001010000001000
10000010100101001010110000000100101010001011101000
00111100001000010000000110111000000001000000001011
10000001100111010111010001000110111010101101111000
【答案提交】
這是一道結果填空的題,你只需要算出結果后提交即可。本題的結果為一個字符串,包含四種字母 D、U、L、R,在提交答案時只填寫這個字符串,填寫多余的內容將無法得分。
#include <bits/stdc++.h> using namespace std; #define N 50 #define M 30 int visited[M][N] = { 0 };//記憶已經經過的點(0表示未經過,1表示經過) int Move[4][2] = { {1,0},{0,-1},{0,1},{-1,0} };//用來移動點 char direction[4] = { 'D','L','R','U' };//與上面的二維數組的第一維索引號對應 struct Point { int x;//橫坐標 int y;//縱坐標 string str;//記憶點的軌跡 int step;//經過距離 Point(int xx, int yy, int ss, string s) {//構造函數 x = xx; y = yy; str = s; step = ss; } }; int MAP[M][N]{//迷宮 {0,1,0,1,0,1,0,1,0,0,1,0,1,1,0,0,1,0,0,1,0,1,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,0,0,0,1,0,0,0,1,0,1,0,1,0}, {0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,1,0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,1,0,0,1,1,0,1,0,0,1,0,1}, {0,1,1,1,1,0,1,1,0,1,0,0,1,0,0,0,1,0,0,0,0,0,1,1,0,1,0,0,1,0,1,1,1,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0}, {0,1,0,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,1,1,0,1,0,0,0,0,1,0,1,0,0,0,0,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,1}, {0,0,0,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0,0,0,0,1,0,0,1,0,1,0,0,0,1,0,1,0,0,0,0,0,1,0,1,1,0,0,0,0,0,0,0,0}, {1,1,0,0,1,0,0,0,1,1,0,1,0,1,0,0,0,0,1,0,1,0,1,1,0,0,0,1,1,0,1,0,0,1,1,0,1,0,1,0,1,0,1,1,1,1,0,1,1,1}, {0,0,0,1,1,0,1,1,0,1,0,1,0,1,0,0,1,0,0,1,0,0,1,0,1,0,0,0,0,0,0,1,0,0,0,1,0,1,0,0,1,1,1,0,0,0,0,0,0,0}, {1,0,1,0,0,0,0,0,1,0,1,0,0,0,1,0,0,1,1,0,1,0,1,0,1,0,1,1,1,1,1,0,0,1,1,0,0,0,0,1,0,0,0,0,1,1,1,0,1,0}, {0,0,1,1,1,0,0,0,0,0,1,0,1,0,1,0,0,0,0,1,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,1,0,0,1,1,0,0,0,0,1,0,0,1}, {1,1,0,0,0,1,1,0,1,0,0,0,0,1,1,1,0,0,1,0,0,0,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0,1,1,0,1,0,0,0}, {0,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0,1,0,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0,1,0,1,0,1,0,1,0,0,0,0,1,0,1}, {1,1,1,0,0,1,0,0,1,0,1,0,0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0,0,1,0,0,1,0,0,0,1,0,1,0,0}, {0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,1,0,1,1,0,0,1,1,1,1,0,1,0,0,0,1,1,0,0,0,0,0,1,0,1,0,1,0,1,0,0,0,1,1}, {1,0,1,0,1,0,1,0,0,1,1,1,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,1,0,1,1,0,0,1,1,1,1,0,1,1,0,1,0,0,0,0,1,0,0,0}, {1,0,1,0,1,0,1,0,1,0,0,0,0,1,1,0,1,0,1,0,1,0,0,1,0,1,0,0,0,0,1,0,1,0,0,0,0,0,1,1,1,0,1,1,1,0,1,0,0,1}, {1,0,0,0,0,0,0,0,1,0,1,1,0,0,0,1,0,0,0,0,1,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,1,0,0}, {1,0,1,0,1,0,0,1,0,0,0,0,0,0,0,1,0,1,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,1,1,1,1,0,1,0,1,0,0,1}, {0,0,1,0,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0,1,0,0,0,1,1,0,1,0,1,0,1,1,0,1,1,1,0,0,0,0,1,1,0,1,0,1}, {1,1,0,0,1,0,1,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,1,0,1,0,0,1,0,1,0,0,0,0,0,1,0,0,0,1,1,1,0,0,0,0,1,0}, {0,0,0,0,1,0,0,0,1,1,0,0,0,0,1,1,0,1,0,1,1,0,1,0,0,0,0,0,0,1,0,0,1,0,1,0,0,1,0,0,1,0,0,0,0,1,1,1,0,1}, {1,0,1,0,0,1,0,1,0,0,0,1,0,1,0,0,0,0,0,0,0,0,1,1,1,0,1,1,0,0,1,0,1,1,0,1,0,1,1,0,1,0,1,0,1,0,0,0,0,1}, {0,0,1,0,1,0,0,0,0,1,0,0,0,0,1,1,0,1,0,1,0,1,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,1,0,0,0,1,0,0,0,1,0,1,0,1}, {1,0,1,0,0,0,0,1,0,0,0,1,1,0,0,1,0,0,0,1,0,0,0,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0,1,1,1,1,1,0,1,0,0,1,0}, {0,0,0,0,0,1,0,0,1,0,1,0,0,0,0,0,0,1,1,0,0,1,0,1,0,0,1,0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0}, {1,1,0,1,0,0,0,0,0,0,1,0,0,1,1,1,0,1,1,1,0,0,1,0,0,1,0,0,0,0,1,1,1,0,1,0,0,1,0,1,1,0,1,1,1,0,1,0,0,0}, {0,0,0,0,0,1,1,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,1,1,0,1,0,0,0,0,0,0,1,1,0,0,1,1}, {1,0,1,0,1,0,0,0,1,0,1,0,0,0,1,0,0,0,1,0,0,0,1,1,1,1,1,0,0,0,1,0,1,0,1,0,0,1,0,1,0,0,0,0,0,0,1,0,0,0}, {1,0,0,0,0,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,1,1,0,0,0,0,0,0,0,1,0,0,1,0,1,0,1,0,0,0,1,0,1,1,1,0,1,0,0,0}, {0,0,1,1,1,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,1,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,1,1}, {1,0,0,0,0,0,0,1,1,0,0,1,1,1,0,1,0,1,1,1,0,1,0,0,0,1,0,0,0,1,1,0,1,1,1,0,1,0,1,0,1,1,0,1,1,1,1,0,0,0} }; bool check(int x, int y) {//檢查是否越界/走重復點/遇到牆 if (x < 0 || x >= M || y < 0 || y >= N || visited[x][y] || MAP[x][y] == 1) return false; return true; } void BFS() { queue<Point> q; Point p(0, 0, 0, "");//初始化隊列,從0,0點出發 q.push(p); visited[0][0] = 1; //下面代碼的整體思路:將我們現在到達的點P周圍,可行點存入隊列中,選擇其中一個點作為點P更新,再將舊的P點從隊列中刪除,再以這個點重復之前找點的操作。 //當這條路為死路時,會回到隊列中另一個可行點,再次搜索,直到找到目標點。 while (!q.empty()) { Point fro = q.front();//取出隊頭 if (fro.x == M - 1 && fro.y == N - 1) {//當到達右下角時,輸出路徑信息與步數,退出 cout << fro.str << endl; cout << fro.step << endl; break; } q.pop(); for (int i = 0; i < 4; ++i) { int nx = fro.x + Move[i][0]; int ny = fro.y + Move[i][1]; if (check(nx, ny)) { q.push(Point(nx, ny, fro.step + 1, fro.str + direction[i])); visited[nx][ny] = 1; } } } } int main() { BFS(); return 0; }
答案:DDDDRRURRRRRRDRRRRDDDLDDRDDDDDDDDDDDDRDDRRRURRUURRDDDDRDRRRRRRDRRURRDDDRRRRUURUUUUUUULULLUUUURRRRUULLLUUUULLUUULUURRURRURURRRDDRRRRRDDRRDDLLLDDRRDDRDDLDDDLLDDLLLDLDDDLDDRRRRRRRRRDDDDDDRR
F題 特別數的和
小明對數位中含有 2、0、1、9 的數字很感興趣(不包括前導0),在1 到 40 中這樣的數包括1、2、9、10 至 32、39 和 40,共 28 個,他們的和是 574。請問,在 1 到n 中,所有這樣的數的和是多少?
【輸入格式】
輸入一行包含兩個整數n。
【輸出格式】
輸出一行,包含一個整數,表示滿足條件的數的和。
【樣例輸入】
40
【樣例輸出】
574
【評測用例規模與約定】
對於20% 的評測用例,1≤n≤10
對於50% 的評測用例,1≤n≤100
對於80% 的評測用例,1≤n≤1000
對於所有評測用例,1≤n≤10000
#include <bits/stdc++.h> using namespace std; bool check(int n) { int flag = false; while (1) { if (n < 10) { if (n == 2 || n == 1 || n == 9 || n == 0) { flag = true; } break; } int k = n % 10; if (k == 2 || k == 1 || k == 9 || k == 0) { flag = true; } n /= 10; } return flag; } int main() { int num, sum = 0; cin >> num; for (int i = 1; i <= num; ++i) { if (check(i)) { sum += i; } } cout << sum; return 0; }
G題 完全二叉樹的權值
給定一棵包含N 個節點的完全二叉樹,樹上每個節點都有一個權值,按從上到下、從左到右的順序依次是A1,A2,...,AN ,如下圖所示:
現在小明要把相同深度的節點的權值加在一起,他想知道哪個深度的節點權值之和最大?如果有多個深度的權值和同為最大,請你輸出其中最小的深度。
注:根的深度是1。
【輸入格式】
第一行包含一個整數N。
第二行包含N 個整數A1,A2,...,AN
【輸出格式】
輸出一個整數代表答案。
【樣例輸入】
7
1 6 5 4 3 2 1
【樣例輸出】
2
【評測用例規模與約定】
對於所有評測用例,1≤N≤100000 ,−100000≤Ai≤100000 。
這道題,需要注意的地方是可以為負值,難度都不大,每個二叉樹每層最多2^(n-1)個,所以,實際上就是比較第sum(1, 2^0),sum(2^0+1,2^1),sum(2^1+1,2^2)....中取max的深度n。
我寫的這個復雜了,可以自己試試簡化。
#include <bits/stdc++.h> using namespace std; int main() { int n, sum = 0, maxnum = 0, d = 1; cin >> n; vector<int> vec(n); for (int i = 0; i < n; ++i) { cin >> vec[i]; } maxnum = vec[0]; if (n == 1) { cout << d << endl; return 0; } vec.erase(vec.begin()); for (int i = 1; pow(2, i) <= vec.size(); ++i) { sum = accumulate(vec.begin(), vec.begin() + pow(2, i), 0); //cout << sum << endl; //cout << sum << " " << maxnum << endl; if (sum > maxnum) { maxnum = sum; d = i + 1; } vec.erase(vec.begin(), vec.begin() + pow(2, i)); } if (!vec.empty()) { sum = accumulate(vec.begin(), vec.end(), 0); if (sum > maxnum) { d = d + 1; } } cout << d; return 0; }
H題 等差數列
數學老師給小明出了一道等差數列求和的題目。但是粗心的小明忘記了一部分的數列,只記得其中N 個整數。
現在給出這N 個整數,小明想知道包含這N 個整數的最短的等差數列有幾項?
【輸入格式】
輸入的第一行包含一個整數N。
第二行包含N 個整數A1,A2,...,AN (注意:A1~AN並不一定是按等差數列中的順序給出)
【輸出格式】
輸出一個整數表示答案。
【樣例輸入】
5
2 6 4 10 20
【樣例輸出】
10
【樣例說明】
包含2、6、4、10、20 的最短的等差數列是2、4、6、8、10、12、14、16、18、20。
【評測用例規模與約定】
對於所有評測用例,2≤N≤100000 ,0≤Ai≤10^9
解決辦法是:排列數列之后,找出兩兩之間的差值最小值作為公差。這道難度不大,但是有坑在,常數列的數目是n ,所以要單獨討論常數列。
#include <bits/stdc++.h> using namespace std; int main() { int n, count; cin >> n; vector<int> vec(n), vec1(n - 1); for (int i = 0; i < n; ++i) { cin >> vec[i]; } sort(vec.begin(), vec.end());//數列排序 if (accumulate(vec.begin(), vec.end(), 0) == n * vec[0]) {//當為常數列時,等差項有n項(前n項和==n*vec[0]) cout << n; return 0; } for (int i = 0; i < n - 1; ++i) { vec1[i] = vec[i + 1] - vec[i]; } sort(vec1.begin(), vec1.end());//數列之間從差,排序 count = (vec.back() - vec.front()) / (*vec.begin()) + 1; cout << count; return 0; }
有N個“+”,M個“-”, N+M+1個整數
涼涼,坑啊!還以為25分這么好得,暴力解決,這道等結果吧,也不確定自己對沒有。
24個正號,1個負號,-25~-1 和 1這就26個整數,可以這樣計算1-(-1+(-2)+(-3)...+(-25)),要考慮括號。
測試用例:
2 1
1 -20 30 -100
1+30-(-20+(-100))
最后一道,我選擇戰略性放棄。