flink在批處理中常見的sink
1.基於本地集合的sink(Collection-based-sink)
2.基於文件的sink(File-based-sink)

//1.定義環境 val env = ExecutionEnvironment.getExecutionEnvironment //2.定義數據 stu(age,name,height) val stu: DataSet[(Int, String, Double)] = env.fromElements( (19, "zhangsan", 178.8), (17, "lisi", 168.8), (18, "wangwu", 184.8), (21, "zhaoliu", 164.8) ) //3.TODO sink到標准輸出 stu.print //3.TODO sink到標准error輸出 stu.printToErr() //4.TODO sink到本地Collection print(stu.collect())
flink支持多種存儲設備上的文件,包括本地文件,hdfs文件等。
flink支持多種文件的存儲格式,包括text文件,CSV文件等。
Ø writeAsText():TextOuputFormat - 將元素作為字符串寫入行。字符串是通過調用每個元素的toString()方法獲得的。
1、將數據寫入本地文件

//0.主意:不論是本地還是hdfs.若Parallelism>1將把path當成目錄名稱,若Parallelism=1將把path當成文件名。 val env = ExecutionEnvironment.getExecutionEnvironment val ds1: DataSource[Map[Int, String]] = env.fromElements(Map(1 -> "spark" , 2 -> "flink")) //1.TODO 寫入到本地,文本文檔,NO_OVERWRITE模式下如果文件已經存在,則報錯,OVERWRITE模式下如果文件已經存在,則覆蓋 ds1.setParallelism(1).writeAsText("test/data1/aa", WriteMode.OVERWRITE) env.execute()
2、將數據寫入HDFS

//TODO writeAsText將數據寫入HDFS val env = ExecutionEnvironment.getExecutionEnvironment val ds1: DataSource[Map[Int, String]] = env.fromElements(Map(1 -> "spark" , 2 -> "flink")) ds1.setParallelism(1).writeAsText("hdfs://hadoop01:9000/a", WriteMode.OVERWRITE) env.execute()
可以使用sortPartition對數據進行排序后再sink到外部系統。

//TODO 使用sortPartition對數據進行排序后再sink到外部系統 val env = ExecutionEnvironment.getExecutionEnvironment //stu(age,name,height) val stu: DataSet[(Int, String, Double)] = env.fromElements( (19, "zhangsan", 178.8), (17, "lisi", 168.8), (18, "wangwu", 184.8), (21, "zhaoliu", 164.8) ) //1.以age從小到大升序排列(0->9) stu.sortPartition(0, Order.ASCENDING).print //2.以name從大到小降序排列(z->a) stu.sortPartition(1, Order.ASCENDING).print //3.以age升序,height降序排列 stu.sortPartition(0, Order.ASCENDING).sortPartition(2, Order.DESCENDING).print //4.所有字段升序排列 stu.sortPartition("_", Order.ASCENDING).print //5.以Student.name升序 //5.1准備數據 case class Student(name: String, age: Int) val ds1: DataSet[(Student, Double)] = env.fromElements( (Student("zhangsan", 18), 178.5), (Student("lisi", 19), 176.5), (Student("wangwu", 17), 168.5) ) val ds2 = ds1.sortPartition("_1.age", Order.ASCENDING).setParallelism(1) //5.2寫入到hdfs,文本文檔 val outPath1="hdfs://hadoop01:9000/Student001.txt" ds2.writeAsText(outPath1, WriteMode.OVERWRITE) env.execute() //5.3寫入到hdfs,CSV文檔 val outPath2="hdfs://hadoop01:9000/Student002.csv" ds2.writeAsCsv(outPath2, "\n", "|||",WriteMode.OVERWRITE) env.execute()