https://www.cnblogs.com/haippy/p/3284540.html
與 C++11 多線程相關的頭文件
C++11 新標准中引入了四個頭文件來支持多線程編程,他們分別是<atomic> ,<thread>,<mutex>,<condition_variable>和<future>。
- <atomic>:該頭文主要聲明了兩個類, std::atomic 和 std::atomic_flag,另外還聲明了一套 C 風格的原子類型和與 C 兼容的原子操作的函數。
- <thread>:該頭文件主要聲明了 std::thread 類,另外 std::this_thread 命名空間也在該頭文件中。
- <mutex>:該頭文件主要聲明了與互斥量(mutex)相關的類,包括 std::mutex 系列類,std::lock_guard, std::unique_lock, 以及其他的類型和函數。
- <condition_variable>:該頭文件主要聲明了與條件變量相關的類,包括 std::condition_variable 和 std::condition_variable_any。
- <future>:該頭文件主要聲明了 std::promise, std::package_task 兩個 Provider 類,以及 std::future 和 std::shared_future 兩個 Future 類,另外還有一些與之相關的類型和函數,std::async() 函數就聲明在此頭文件中。
簡單例子
#include <QCoreApplication> #include <iostream> // std::cout #include <thread> // std::thread #include <mutex> // std::mutex, std::lock_guard #include <stdexcept> // std::logic_error std::mutex mtx; void thread_task() { std::cout << "hello thread" << std::endl; } int main(int argc, char *argv[]) { QCoreApplication a(argc, argv); std::thread t(thread_task); t.join(); return a.exec(); }
std::thread 在 <thread> 頭文件中聲明,因此使用 std::thread 時需要包含 <thread> 頭文件。
std::thread 構造
default (1) | thread() noexcept; |
---|---|
initialization (2) | template <class Fn, class... Args> explicit thread (Fn&& fn, Args&&... args); |
copy [deleted] (3) | thread (const thread&) = delete; |
move (4) | thread (thread&& x) noexcept; |
- (1). 默認構造函數,創建一個空的 thread 執行對象。
- (2). 初始化構造函數,創建一個 thread對象,該 thread對象可被 joinable,新產生的線程會調用 fn 函數,該函數的參數由 args 給出。
- (3). 拷貝構造函數(被禁用),意味着 thread 不可被拷貝構造。
- (4). move 構造函數,move 構造函數,調用成功之后 x 不代表任何 thread 執行對象。
- 注意:可被 joinable 的 thread 對象必須在他們銷毀之前被主線程 join 或者將其設置為 detached.

#include <QCoreApplication> #include <iostream> #include <utility> #include <thread> #include <chrono> #include <functional> #include <atomic> void f1(int n) { for (int i = 0; i < 5; ++i) { std::cout << "Thread " << n << " executing\n"; std::this_thread::sleep_for(std::chrono::milliseconds(10)); } } void f2(int& n) { for (int i = 0; i < 5; ++i) { std::cout << "Thread 2 executing\n"; ++n; std::this_thread::sleep_for(std::chrono::milliseconds(10)); } } int main(int argc, char *argv[]) { QCoreApplication a(argc, argv); int n = 0; std::thread t1; // t1 is not a thread std::thread t2(f1, n + 1); // pass by value std::thread t3(f2, std::ref(n)); // pass by reference std::thread t4(std::move(t3)); // t4 is now running f2(). t3 is no longer a thread t2.join(); t4.join(); std::cout << "Final value of n is " << n << '\n'; return a.exec(); }
move 賦值操作
move (1) | thread& operator= (thread&& rhs) noexcept; |
---|---|
copy [deleted] (2) | thread& operator= (const thread&) = delete; |
- (1). move 賦值操作,如果當前對象不可 joinable,需要傳遞一個右值引用(rhs)給 move 賦值操作;如果當前對象可被 joinable,則 terminate() 報錯。
- (2). 拷貝賦值操作被禁用,thread 對象不可被拷貝。
請看下面的例子:
#include <QCoreApplication> #include <stdio.h> #include <stdlib.h> #include <chrono> // std::chrono::seconds #include <iostream> // std::cout #include <thread> // std::thread, std::this_thread::sleep_for void thread_task(int n) { std::this_thread::sleep_for(std::chrono::seconds(n)); std::cout << "hello thread " << std::this_thread::get_id() << " paused " << n << " seconds" << std::endl; } int main(int argc, char *argv[]) { QCoreApplication a(argc, argv); std::thread threads[5]; std::cout << "Spawning 5 threads...\n"; for (int i = 0; i < 5; i++) { threads[i] = std::thread(thread_task, i + 1); } std::cout << "Done spawning threads! Now wait for them to join\n"; for (auto& t: threads) { t.join(); } std::cout << "All threads joined.\n"; return a.exec(); }
Spawning 5 threads... Done spawning threads! Now wait for them to join hello thread 2 paused 1 seconds hello thread 3 paused 2 seconds hello thread 4 paused 3 seconds hello thread 5 paused 4 seconds hello thread 6 paused 5 seconds All threads joined.