寫在前面
xLearn是由Chao Ma實現的一個高效的機器學習算法庫,這里附上github地址:
https://github.com/aksnzhy/xlearn
FM是機器學習中一個在CTR領域中表現突出的模型,最早由Konstanz大學Steffen Rendle(現任職於Google)於2010年最早提出。
FM模型
FM的模型方程為:
直觀上看,FM的復雜度是 \(O(kn^2)\),但是,FM的二次項可以化簡,其復雜度可以優化到 \(O(kn)\)。論文中簡化如下式:
這里記錄一下具體推導過程:
xLearn的CalcScore實現
// y = sum( (V_i*V_j)(x_i * x_j) )
// Using SSE to accelerate vector operation.
// row為libsvm格式的樣本,采用vector稀疏存儲的Node,Node里有feat_id及feat_val
// model為模型
real_t FMScore::CalcScore(const SparseRow* row,
Model& model,
real_t norm) {
/*********************************************************
* linear term and bias term *
*********************************************************/
real_t sqrt_norm = sqrt(norm);
real_t *w = model.GetParameter_w();
index_t num_feat = model.GetNumFeature();
real_t t = 0;
index_t aux_size = model.GetAuxiliarySize();
for (SparseRow::const_iterator iter = row->begin();
iter != row->end(); ++iter) {
index_t feat_id = iter->feat_id;
// To avoid unseen feature in Prediction
if (feat_id >= num_feat) continue;
//計算線性部分x_i*w_i,求和到t
t += (iter->feat_val * w[feat_id*aux_size] * sqrt_norm);
}
// bias
// 偏置w_0,加到t
w = model.GetParameter_b();
t += w[0];
/*********************************************************
* latent factor *
*********************************************************/
//隱向量長度調整為4的整數倍aligned_k
index_t aligned_k = model.get_aligned_k();
index_t align0 = model.get_aligned_k() * aux_size;
std::vector<real_t> sv(aligned_k, 0);
real_t* s = sv.data();
for (SparseRow::const_iterator iter = row->begin();
iter != row->end(); ++iter) {
index_t j1 = iter->feat_id;
// To avoid unseen feature in Prediction
if (j1 >= num_feat) continue;
real_t v1 = iter->feat_val;//x_i
real_t *w = model.GetParameter_v() + j1 * align0;//v_i
//SSE指令,x_i存儲於128位的寄存器中
__m128 XMMv = _mm_set1_ps(v1*norm);//x_i
//循環每次移動4個長度,4個float正好128位,一次循環計算4個浮點數
for (index_t d = 0; d < aligned_k; d += kAlign) {
__m128 XMMs = _mm_load_ps(s+d);
__m128 const XMMw = _mm_load_ps(w+d);//v_i
//計算v_if * x_i,並按i求和,結果是一個k維向量sv
XMMs = _mm_add_ps(XMMs, _mm_mul_ps(XMMw, XMMv));
_mm_store_ps(s+d, XMMs);
}
}
__m128 XMMt = _mm_set1_ps(0.0f);
for (SparseRow::const_iterator iter = row->begin();
iter != row->end(); ++iter) {
index_t j1 = iter->feat_id;
// To avoid unseen feature in Prediction
if (j1 >= num_feat) continue;
real_t v1 = iter->feat_val;//x_i
real_t *w = model.GetParameter_v() + j1 * align0;//v_i
//SSE指令,x_i存儲於128位的寄存器中
__m128 XMMv = _mm_set1_ps(v1*norm);
for (index_t d = 0; d < aligned_k; d += kAlign) {
__m128 XMMs = _mm_load_ps(s+d);
__m128 XMMw = _mm_load_ps(w+d);//v_i
__m128 XMMwv = _mm_mul_ps(XMMw, XMMv);//v_if * x_i
XMMt = _mm_add_ps(XMMt,
_mm_mul_ps(XMMwv, _mm_sub_ps(XMMs, XMMwv)));
}
}
XMMt = _mm_hadd_ps(XMMt, XMMt);
XMMt = _mm_hadd_ps(XMMt, XMMt);
real_t t_all;
_mm_store_ss(&t_all, XMMt);
t_all *= 0.5;
t_all += t;
return t_all;
}
在xLearn中的實現,並非是論文的簡化后的公式,具體如下:
第一個for循環是計算\(\sum_{j=1}^n v_{jf} x_j\),注意下標是j,結果存於sv的vector中,內層嵌套for循環並沒有做求和操作,只是遍歷的隱向量。
第二個for循環是計算\(\sum_{i=1}^n\),注意下標是i,內層嵌套for循環是計算\(\sum_{f=1}^k\),被兩層循環計算求和的單元是
用到了前面循環的中間結果,結果存於XMMt,由於內層循環是以4個浮點數同時做計算,所以結果最后需要將這個四個浮點數加起來,調用了兩次_mm_hadd_ps實現。
參考鏈接:
http://www.algo.uni-konstanz.de/members/rendle/pdf/Rendle2010FM.pdf
https://tech.meituan.com/2016/03/03/deep-understanding-of-ffm-principles-and-practices.html