FM算法keras實現



import numpy as np
import pandas as pd
import tensorflow as tf
import keras
import os

import matplotlib.pyplot as plt

from keras.layers import Layer,Dense,Dropout,Input
from keras import Model,activations
from keras.optimizers import Adam
from keras import backend as K
from keras.layers import Layer
from sklearn.datasets import load_breast_cancer

os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ['CUDA_VISIBLE_DEVICES'] = "0"
class FM(Layer):
    def __init__(self, output_dim, latent=10,  activation='relu', **kwargs):
        self.latent = latent
        self.output_dim = output_dim
        self.activation = activations.get(activation)
        super(FM, self).__init__(**kwargs)

    def build(self, input_shape):
        self.b = self.add_weight(name='W0',
                                  shape=(self.output_dim,),
                                  trainable=True,
                                 initializer='zeros')
        self.w = self.add_weight(name='W',
                                 shape=(input_shape[1], self.output_dim),
                                 trainable=True,
                                 initializer='random_uniform')
        self.v= self.add_weight(name='V',
                                 shape=(input_shape[1], self.latent),
                                 trainable=True,
                                initializer='random_uniform')
        super(FM, self).build(input_shape)

    def call(self, inputs, **kwargs):
        x = inputs
        x_square = K.square(x)

        xv = K.square(K.dot(x, self.v))
        xw = K.dot(x, self.w)

        p = 0.5*K.sum(xv-K.dot(x_square, K.square(self.v)), 1)

        rp = K.repeat_elements(K.reshape(p, (-1, 1)), self.output_dim, axis=-1)

        f = xw + rp + self.b

        output = K.reshape(f, (-1, self.output_dim))

        return output

    def compute_output_shape(self, input_shape):
        assert input_shape and len(input_shape)==2
        return input_shape[0],self.output_dim


data = load_breast_cancer()["data"]
target = load_breast_cancer()["target"]

K.clear_session()
print(target)
inputs = Input(shape=(30,))
out = FM(20)(inputs)
out = Dense(15, activation='sigmoid')(out)
out = Dense(1, activation='sigmoid')(out)

model=Model(inputs=inputs, outputs=out)
model.compile(loss='mse',
              optimizer='adam',
              metrics=['acc'])
model.summary()

h=model.fit(data, target, batch_size=1, epochs=10, validation_split=0.2)

#%%

plt.plot(h.history['acc'],label='acc')
plt.plot(h.history['val_acc'],label='val_acc')
plt.xlabel('epoch')
plt.ylabel('acc')

#%%


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM