Linux Kernel文件系統寫I/O流程代碼分析(二)bdi_writeback
上一篇# Linux Kernel文件系統寫I/O流程代碼分析(一),我們看到Buffered IO,寫操作寫入到page cache后就直接返回了,本文主要分析臟頁是如何刷盤的。
概述
由於內核page cache的作用,寫操作實際被延遲寫入。當page cache里的數據被用戶寫入但是沒有刷新到磁盤時,則該page為臟頁(塊設備page cache機制因為以前機械磁盤以扇區為單位讀寫,引入了buffer_head,每個4K的page進一步划分成8個buffer,通過buffer_head管理,因此可能只設置了部分buffer head為臟)。
臟頁在以下情況下將被回寫(write back)到磁盤上:
- 臟頁在內存里的時間超過了閾值。
- 系統的內存緊張,低於某個閾值時,必須將所有臟頁回寫。
- 用戶強制要求刷盤,如調用sync()、fsync()、close()等系統調用。
以前的Linux通過pbflush機制管理臟頁的回寫,但因為其管理了所有的磁盤的page/buffer_head,存在嚴重的性能瓶頸,因此從Linux 2.6.32開始,臟頁回寫的工作由bdi_writeback機制負責。bdi_writeback機制為每個磁盤都創建一個線程,專門負責這個磁盤的page cache或者
buffer cache的數據刷新工作,以提高I/O性能。
BDI系統
BDI是backing device info的縮寫,它用於描述后端存儲(如磁盤)設備相關的信息。相對於內存來說,后端存儲的I/O比較慢,因此寫盤操作需要通過page cache進行緩存延遲寫入。
最初的BDI子系統里,模塊啟動的時候創建bdi-default進程,然后為每個注冊的設備創建flush-x:y(x,y為主次設備號)的進程,用於臟數據的回寫。在Linux 3.10.0版本之后,BDI子系統使用workqueue機制代替原來的線程創建,需要回寫時,將flush任務提交給workqueue,最終由通用的[kworker]進程負責處理。BDI子系統初始化的代碼如下:
static int __init default_bdi_init(void)
{
int err;
bdi_wq = alloc_workqueue("writeback", WQ_MEM_RECLAIM | WQ_FREEZABLE |
WQ_UNBOUND | WQ_SYSFS, 0);
if (!bdi_wq)
return -ENOMEM;
err = bdi_init(&default_backing_dev_info);
if (!err)
bdi_register(&default_backing_dev_info, NULL, "default");
err = bdi_init(&noop_backing_dev_info);
return err;
}
subsys_initcall(default_bdi_init);
設備注冊
當執行mount流程時,底層文件系統定義自己的struct backing_dev_info結構並將其注冊到BDI子系統,如下是FUSE代碼示例:
static int fuse_bdi_init(struct fuse_conn *fc, struct super_block *sb)
{
int err;
fc->bdi.name = "fuse";
fc->bdi.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
/* fuse does it's own writeback accounting */
fc->bdi.capabilities = BDI_CAP_NO_ACCT_WB | BDI_CAP_STRICTLIMIT;
err = bdi_init(&fc->bdi);
if (err)
return err;
fc->bdi_initialized = 1;
if (sb->s_bdev) {
err = bdi_register(&fc->bdi, NULL, "%u:%u-fuseblk",
MAJOR(fc->dev), MINOR(fc->dev));
} else {
err = bdi_register_dev(&fc->bdi, fc->dev);
}
if (err)
return err;
/*
* /sys/class/bdi/<bdi>/max_ratio
*/
bdi_set_max_ratio(&fc->bdi, 1);
return 0;
}
該函數先通過bdi_init()初始化struct backing_dev_info,然后通過bid_register()將其注冊到BDI子系統。
其中bdi_init()會調用bdi_wb_init()初始化struct bdi_writeback:
static void bdi_wb_init(struct bdi_writeback *wb, struct backing_dev_info *bdi)
{
memset(wb, 0, sizeof(*wb));
wb->bdi = bdi;
wb->last_old_flush = jiffies;
INIT_LIST_HEAD(&wb->b_dirty);
INIT_LIST_HEAD(&wb->b_io);
INIT_LIST_HEAD(&wb->b_more_io);
spin_lock_init(&wb->list_lock);
INIT_DELAYED_WORK(&wb->dwork, bdi_writeback_workfn);
}
其中初始化了一個默認處理函數為bdi_writeback_workfn的work,用於回寫處理。
數據回寫
在上一篇的基礎上,將圖補充了bdi回寫的部分,如下所示:

bdi_queue_work
BDI子系統使用workqueue機制進行數據回寫,其回寫接口為bdi_queue_work()將具體某個bdi的回寫請求(wb_writeback_work)掛到bdi_wq上。代碼如下:
static void bdi_queue_work(struct backing_dev_info *bdi,
struct wb_writeback_work *work)
{
trace_writeback_queue(bdi, work);
spin_lock_bh(&bdi->wb_lock);
if (!test_bit(BDI_registered, &bdi->state)) {
if (work->done)
complete(work->done);
goto out_unlock;
}
list_add_tail(&work->list, &bdi->work_list);
mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
out_unlock:
spin_unlock_bh(&bdi->wb_lock);
}
調用該函數的地方包括:
- sync_inode_sb(): 將該super block上所有的臟inode回寫。
- writeback_inodes_sb_nr():回寫super block上指定個數臟inode。
- __bdi_start_writeback():定時調用或者需要釋放pages或者需要更多內存時調用。
bdi_writeback_workfn
bdi_queue_work()提交了work給bdi_wq上,由對應的bdi處理函數進行處理,默認的函數為bdi_writeback_workfn,其代碼如下:
void bdi_writeback_workfn(struct work_struct *work)
{
struct bdi_writeback *wb = container_of(to_delayed_work(work),
struct bdi_writeback, dwork);
struct backing_dev_info *bdi = wb->bdi;
long pages_written;
set_worker_desc("flush-%s", dev_name(bdi->dev));
current->flags |= PF_SWAPWRITE;
if (likely(!current_is_workqueue_rescuer() ||
!test_bit(BDI_registered, &bdi->state))) {
/*
* The normal path. Keep writing back @bdi until its
* work_list is empty. Note that this path is also taken
* if @bdi is shutting down even when we're running off the
* rescuer as work_list needs to be drained.
*/
do {
pages_written = wb_do_writeback(wb);
trace_writeback_pages_written(pages_written);
} while (!list_empty(&bdi->work_list));
} else {
/*
* bdi_wq can't get enough workers and we're running off
* the emergency worker. Don't hog it. Hopefully, 1024 is
* enough for efficient IO.
*/
pages_written = writeback_inodes_wb(&bdi->wb, 1024,
WB_REASON_FORKER_THREAD);
trace_writeback_pages_written(pages_written);
}
if (!list_empty(&bdi->work_list))
mod_delayed_work(bdi_wq, &wb->dwork, 0);
else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
bdi_wakeup_thread_delayed(bdi);
current->flags &= ~PF_SWAPWRITE;
}
首先判斷當前workqueue能否獲得足夠的worker進行處理,如果能則將bdi上所有work全部提交,否則只提交一個work並限制寫入1024個pages。
正常情況下通過調用wb_do_writeback函數處理回寫。
wb_do_writeback
該函數代碼如下,遍歷bdi上所有work,通過調用wb_writeback()進行數據寫入。
static long wb_do_writeback(struct bdi_writeback *wb)
{
struct backing_dev_info *bdi = wb->bdi;
struct wb_writeback_work *work;
long wrote = 0;
set_bit(BDI_writeback_running, &wb->bdi->state);
while ((work = get_next_work_item(bdi)) != NULL) {
trace_writeback_exec(bdi, work);
wrote += wb_writeback(wb, work);
/*
* Notify the caller of completion if this is a synchronous
* work item, otherwise just free it.
*/
if (work->done)
complete(work->done);
else
kfree(work);
}
/*
* Check for periodic writeback, kupdated() style
*/
wrote += wb_check_old_data_flush(wb);
wrote += wb_check_background_flush(wb);
clear_bit(BDI_writeback_running, &wb->bdi->state);
return wrote;
}
wb_writeback()函數最終調用__writeback_single_inode()將某個inode上臟頁刷回。
__writeback_single_inode
__writeback_single_inode()的代碼如下,最終通過調用do_writepages()函數寫盤:
static int
__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
{
struct address_space *mapping = inode->i_mapping;
long nr_to_write = wbc->nr_to_write;
unsigned dirty;
int ret;
WARN_ON(!(inode->i_state & I_SYNC));
trace_writeback_single_inode_start(inode, wbc, nr_to_write);
ret = do_writepages(mapping, wbc);
/*
* Make sure to wait on the data before writing out the metadata.
* This is important for filesystems that modify metadata on data
* I/O completion. We don't do it for sync(2) writeback because it has a
* separate, external IO completion path and ->sync_fs for guaranteeing
* inode metadata is written back correctly.
*/
if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
int err = filemap_fdatawait(mapping);
if (ret == 0)
ret = err;
}
/*
* Some filesystems may redirty the inode during the writeback
* due to delalloc, clear dirty metadata flags right before
* write_inode()
*/
spin_lock(&inode->i_lock);
/* Clear I_DIRTY_PAGES if we've written out all dirty pages */
if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
inode->i_state &= ~I_DIRTY_PAGES;
dirty = inode->i_state & I_DIRTY;
inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
spin_unlock(&inode->i_lock);
/* Don't write the inode if only I_DIRTY_PAGES was set */
if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
int err = write_inode(inode, wbc);
if (ret == 0)
ret = err;
}
trace_writeback_single_inode(inode, wbc, nr_to_write);
return ret;
}
do_writepages
函數do_writepages()在上一篇已經介紹過了,它負責調用底層文件系統的a_ops->writepages將pages寫入后端存儲。
