我們通常對一個文件可以直接讀寫操作,或者普通的分區(沒有文件系統)也是一樣,直接對/dev/block/boot直接讀寫,就可以獲取里面的數據內容了。
當我們在ota升級的時候,把升級包下載到cache/data分區,然后進入recovery系統后,把cache/data分區mount之后,即可從對應的分區獲取zip升級包升級了, 前提是我們需要掛載對應的分區cache或者data,這樣才能給讀升級包升級,如果不掛載分區,我們能給直接從/dev/block/data獲取升級包升級嗎?
這就是我們今天討論的主題,不掛載data分區,如何從/dev/block/data獲取升級包升級, 這個依賴bootable/recovery/uncrypt/uncrypt.cpp下面的代碼實現了,我們通過獲取update.zip升級包, 是如何在/dev/block/data存儲的。 我們知道了update.zip如何在/dev/block/data存儲的,那么就可以直接從/dev/block/data讀取升級包升級了。下面對uncrypt.cpp源碼分析:
static constexpr int WINDOW_SIZE = 5; static constexpr int FIBMAP_RETRY_LIMIT = 3; // uncrypt provides three services: SETUP_BCB, CLEAR_BCB and UNCRYPT. // // SETUP_BCB and CLEAR_BCB services use socket communication and do not rely // on /cache partitions. They will handle requests to reboot into recovery // (for applying updates for non-A/B devices, or factory resets for all // devices). // // UNCRYPT service still needs files on /cache partition (UNCRYPT_PATH_FILE // and CACHE_BLOCK_MAP). It will be working (and needed) only for non-A/B // devices, on which /cache partitions always exist. static const std::string CACHE_BLOCK_MAP = "/cache/recovery/block.map"; static const std::string UNCRYPT_PATH_FILE = "/cache/recovery/uncrypt_file"; static const std::string UNCRYPT_STATUS = "/cache/recovery/uncrypt_status"; static const std::string UNCRYPT_SOCKET = "uncrypt";
WINDOW_SIZE = 5; 每次當有5個block size大小的數據,就寫一次。
FIBMAP_RETRY_LIMIT = 3; 調用 ioctl(fd, FIBMAP, block) 嘗試的次數。
CACHE_BLOCK_MAP = "/cache/recovery/block.map" 關於升級包的存儲信息及稀疏塊列表的描述文件。
UNCRYPT_PATH_FILE = "/cache/recovery/uncrypt_file"; 存儲原始升級包的路徑。
UNCRYPT_STATUS = "/cache/recovery/uncrypt_status"; 對升級包uncrypt操作的狀態結果。
UNCRYPT_SOCKET = "uncrypt"; 使用 /dev/socket/uncrypt 通信
static int write_at_offset(unsigned char* buffer, size_t size, int wfd, off64_t offset) { if (TEMP_FAILURE_RETRY(lseek64(wfd, offset, SEEK_SET)) == -1) { PLOG(ERROR) << "error seeking to offset " << offset; return -1; } if (!android::base::WriteFully(wfd, buffer, size)) { PLOG(ERROR) << "error writing offset " << offset; return -1; } return 0; }
寫長度為size的buffer數據到wfd偏移offset地方
static void add_block_to_ranges(std::vector<int>& ranges, int new_block) { if (!ranges.empty() && new_block == ranges.back()) { // If the new block comes immediately after the current range, // all we have to do is extend the current range. ++ranges.back(); } else { // We need to start a new range. ranges.push_back(new_block); ranges.push_back(new_block + 1); } }
生成升級包的block塊的稀疏列表, 比如1001 1004, 如果new block為1004, 則稀疏范圍為1001 1005, 如果new block非1004,比如為1120, 則稀疏列表為 1001 1004, 1120 1121。
1001 1004表示為1001 1002 1003三個block,不包含1004
static struct fstab* read_fstab() { fstab = fs_mgr_read_fstab_default(); if (!fstab) { LOG(ERROR) << "failed to read default fstab"; return NULL; } return fstab; }
讀取分區掛載表
static const char* find_block_device(const char* path, bool* encryptable, bool* encrypted, bool *f2fs_fs) { // Look for a volume whose mount point is the prefix of path and // return its block device. Set encrypted if it's currently // encrypted. // ensure f2fs_fs is set to 0 first. if (f2fs_fs) *f2fs_fs = false; for (int i = 0; i < fstab->num_entries; ++i) { struct fstab_rec* v = &fstab->recs[i]; if (!v->mount_point) { continue; } int len = strlen(v->mount_point); if (strncmp(path, v->mount_point, len) == 0 && (path[len] == '/' || path[len] == 0)) { *encrypted = false; *encryptable = false; if (fs_mgr_is_encryptable(v) || fs_mgr_is_file_encrypted(v)) { *encryptable = true; if (android::base::GetProperty("ro.crypto.state", "") == "encrypted") { *encrypted = true; } } if (f2fs_fs && strcmp(v->fs_type, "f2fs") == 0) *f2fs_fs = true; return v->blk_device; } } return NULL; }
通過升級包路徑(/data/xxx_ota_20180823.zip)獲取升級包對應的device(/dev/block/data),並且通過解析fstab判斷(data)分區是否加密,*encrypted = true; 是否支持加密, *encryptable = true;
static bool write_status_to_socket(int status, int socket) { // If socket equals -1, uncrypt is in debug mode without socket communication. // Skip writing and return success. if (socket == -1) { return true; } int status_out = htonl(status); return android::base::WriteFully(socket, &status_out, sizeof(int)); }
通過socket保存uncrypt status
// Parse uncrypt_file to find the update package name. static bool find_uncrypt_package(const std::string& uncrypt_path_file, std::string* package_name) { CHECK(package_name != nullptr); std::string uncrypt_path; if (!android::base::ReadFileToString(uncrypt_path_file, &uncrypt_path)) { PLOG(ERROR) << "failed to open \"" << uncrypt_path_file << "\""; return false; } // Remove the trailing '\n' if present. *package_name = android::base::Trim(uncrypt_path); return true; }
通過讀取/cache/recovery/uncrypt_file 獲取原始升級包名字
static int retry_fibmap(const int fd, const char* name, int* block, const int head_block) { CHECK(block != nullptr); for (size_t i = 0; i < FIBMAP_RETRY_LIMIT; i++) { if (fsync(fd) == -1) { PLOG(ERROR) << "failed to fsync \"" << name << "\""; return kUncryptFileSyncError; } if (ioctl(fd, FIBMAP, block) != 0) { PLOG(ERROR) << "failed to find block " << head_block; return kUncryptIoctlError; } if (*block != 0) { return kUncryptNoError; } sleep(1); } LOG(ERROR) << "fibmap of " << head_block << "always returns 0"; return kUncryptIoctlError; }
通過 ioctl(fd, FIBMAP, block) 調用,獲取升級包的每個block的數據,在 /dev/block/data的實際存儲數據的block對應的索引。嘗試三次后返回失敗。
static int produce_block_map(const char* path, const char* map_file, const char* blk_dev, bool encrypted, bool f2fs_fs, int socket) { std::string err; if (!android::base::RemoveFileIfExists(map_file, &err)) { LOG(ERROR) << "failed to remove the existing map file " << map_file << ": " << err; return kUncryptFileRemoveError; } std::string tmp_map_file = std::string(map_file) + ".tmp"; android::base::unique_fd mapfd(open(tmp_map_file.c_str(), O_WRONLY | O_CREAT, S_IRUSR | S_IWUSR)); if (mapfd == -1) { PLOG(ERROR) << "failed to open " << tmp_map_file; return kUncryptFileOpenError; } // Make sure we can write to the socket. if (!write_status_to_socket(0, socket)) { LOG(ERROR) << "failed to write to socket " << socket; return kUncryptSocketWriteError; } struct stat sb; if (stat(path, &sb) != 0) { LOG(ERROR) << "failed to stat " << path; return kUncryptFileStatError; } LOG(INFO) << " block size: " << sb.st_blksize << " bytes"; int blocks = ((sb.st_size-1) / sb.st_blksize) + 1; LOG(INFO) << " file size: " << sb.st_size << " bytes, " << blocks << " blocks"; std::vector<int> ranges; std::string s = android::base::StringPrintf("%s\n%" PRId64 " %" PRId64 "\n", blk_dev, static_cast<int64_t>(sb.st_size), static_cast<int64_t>(sb.st_blksize)); if (!android::base::WriteStringToFd(s, mapfd)) { PLOG(ERROR) << "failed to write " << tmp_map_file; return kUncryptWriteError; } std::vector<std::vector<unsigned char>> buffers; if (encrypted) { buffers.resize(WINDOW_SIZE, std::vector<unsigned char>(sb.st_blksize)); } int head_block = 0; int head = 0, tail = 0; android::base::unique_fd fd(open(path, O_RDONLY)); if (fd == -1) { PLOG(ERROR) << "failed to open " << path << " for reading"; return kUncryptFileOpenError; } android::base::unique_fd wfd; if (encrypted) { wfd.reset(open(blk_dev, O_WRONLY)); if (wfd == -1) { PLOG(ERROR) << "failed to open " << blk_dev << " for writing"; return kUncryptBlockOpenError; } } #ifndef F2FS_IOC_SET_DONTMOVE #ifndef F2FS_IOCTL_MAGIC #define F2FS_IOCTL_MAGIC 0xf5 #endif #define F2FS_IOC_SET_DONTMOVE _IO(F2FS_IOCTL_MAGIC, 13) #endif if (f2fs_fs && ioctl(fd, F2FS_IOC_SET_DONTMOVE) < 0) { PLOG(ERROR) << "Failed to set non-movable file for f2fs: " << path << " on " << blk_dev; return kUncryptIoctlError; } off64_t pos = 0; int last_progress = 0; while (pos < sb.st_size) { // Update the status file, progress must be between [0, 99]. int progress = static_cast<int>(100 * (double(pos) / double(sb.st_size))); if (progress > last_progress) { last_progress = progress; write_status_to_socket(progress, socket); } if ((tail+1) % WINDOW_SIZE == head) { // write out head buffer int block = head_block; if (ioctl(fd, FIBMAP, &block) != 0) { PLOG(ERROR) << "failed to find block " << head_block; return kUncryptIoctlError; } if (block == 0) { LOG(ERROR) << "failed to find block " << head_block << ", retrying"; int error = retry_fibmap(fd, path, &block, head_block); if (error != kUncryptNoError) { return error; } } add_block_to_ranges(ranges, block); if (encrypted) { if (write_at_offset(buffers[head].data(), sb.st_blksize, wfd, static_cast<off64_t>(sb.st_blksize) * block) != 0) { return kUncryptWriteError; } } head = (head + 1) % WINDOW_SIZE; ++head_block; } // read next block to tail if (encrypted) { size_t to_read = static_cast<size_t>( std::min(static_cast<off64_t>(sb.st_blksize), sb.st_size - pos)); if (!android::base::ReadFully(fd, buffers[tail].data(), to_read)) { PLOG(ERROR) << "failed to read " << path; return kUncryptReadError; } pos += to_read; } else { // If we're not encrypting; we don't need to actually read // anything, just skip pos forward as if we'd read a // block. pos += sb.st_blksize; } tail = (tail+1) % WINDOW_SIZE; } while (head != tail) { // write out head buffer int block = head_block; if (ioctl(fd, FIBMAP, &block) != 0) { PLOG(ERROR) << "failed to find block " << head_block; return kUncryptIoctlError; } if (block == 0) { LOG(ERROR) << "failed to find block " << head_block << ", retrying"; int error = retry_fibmap(fd, path, &block, head_block); if (error != kUncryptNoError) { return error; } } add_block_to_ranges(ranges, block); if (encrypted) { if (write_at_offset(buffers[head].data(), sb.st_blksize, wfd, static_cast<off64_t>(sb.st_blksize) * block) != 0) { return kUncryptWriteError; } } head = (head + 1) % WINDOW_SIZE; ++head_block; } if (!android::base::WriteStringToFd( android::base::StringPrintf("%zu\n", ranges.size() / 2), mapfd)) { PLOG(ERROR) << "failed to write " << tmp_map_file; return kUncryptWriteError; } for (size_t i = 0; i < ranges.size(); i += 2) { if (!android::base::WriteStringToFd( android::base::StringPrintf("%d %d\n", ranges[i], ranges[i+1]), mapfd)) { PLOG(ERROR) << "failed to write " << tmp_map_file; return kUncryptWriteError; } } if (fsync(mapfd) == -1) { PLOG(ERROR) << "failed to fsync \"" << tmp_map_file << "\""; return kUncryptFileSyncError; } if (close(mapfd.release()) == -1) { PLOG(ERROR) << "failed to close " << tmp_map_file; return kUncryptFileCloseError; } if (encrypted) { if (fsync(wfd) == -1) { PLOG(ERROR) << "failed to fsync \"" << blk_dev << "\""; return kUncryptFileSyncError; } if (close(wfd.release()) == -1) { PLOG(ERROR) << "failed to close " << blk_dev; return kUncryptFileCloseError; } } if (rename(tmp_map_file.c_str(), map_file) == -1) { PLOG(ERROR) << "failed to rename " << tmp_map_file << " to " << map_file; return kUncryptFileRenameError; } // Sync dir to make rename() result written to disk. std::string file_name = map_file; std::string dir_name = dirname(&file_name[0]); android::base::unique_fd dfd(open(dir_name.c_str(), O_RDONLY | O_DIRECTORY)); if (dfd == -1) { PLOG(ERROR) << "failed to open dir " << dir_name; return kUncryptFileOpenError; } if (fsync(dfd) == -1) { PLOG(ERROR) << "failed to fsync " << dir_name; return kUncryptFileSyncError; } if (close(dfd.release()) == -1) { PLOG(ERROR) << "failed to close " << dir_name; return kUncryptFileCloseError; } return