recovery uncrypt功能解析(bootable/recovery/uncrypt/uncrypt.cpp)


我们通常对一个文件可以直接读写操作,或者普通的分区(没有文件系统)也是一样,直接对/dev/block/boot直接读写,就可以获取里面的数据内容了。

当我们在ota升级的时候,把升级包下载到cache/data分区,然后进入recovery系统后,把cache/data分区mount之后,即可从对应的分区获取zip升级包升级了, 前提是我们需要挂载对应的分区cache或者data,这样才能给读升级包升级,如果不挂载分区,我们能给直接从/dev/block/data获取升级包升级吗?

这就是我们今天讨论的主题,不挂载data分区,如何从/dev/block/data获取升级包升级, 这个依赖bootable/recovery/uncrypt/uncrypt.cpp下面的代码实现了,我们通过获取update.zip升级包, 是如何在/dev/block/data存储的。 我们知道了update.zip如何在/dev/block/data存储的,那么就可以直接从/dev/block/data读取升级包升级了。下面对uncrypt.cpp源码分析:

static constexpr int WINDOW_SIZE = 5; static constexpr int FIBMAP_RETRY_LIMIT = 3; // uncrypt provides three services: SETUP_BCB, CLEAR_BCB and UNCRYPT. // // SETUP_BCB and CLEAR_BCB services use socket communication and do not rely // on /cache partitions. They will handle requests to reboot into recovery // (for applying updates for non-A/B devices, or factory resets for all // devices). // // UNCRYPT service still needs files on /cache partition (UNCRYPT_PATH_FILE // and CACHE_BLOCK_MAP). It will be working (and needed) only for non-A/B // devices, on which /cache partitions always exist. static const std::string CACHE_BLOCK_MAP = "/cache/recovery/block.map"; static const std::string UNCRYPT_PATH_FILE = "/cache/recovery/uncrypt_file"; static const std::string UNCRYPT_STATUS = "/cache/recovery/uncrypt_status"; static const std::string UNCRYPT_SOCKET = "uncrypt";

WINDOW_SIZE = 5; 每次当有5个block size大小的数据,就写一次。

FIBMAP_RETRY_LIMIT = 3;  调用 ioctl(fd, FIBMAP, block) 尝试的次数。

CACHE_BLOCK_MAP = "/cache/recovery/block.map"  关于升级包的存储信息及稀疏块列表的描述文件。

UNCRYPT_PATH_FILE = "/cache/recovery/uncrypt_file";  存储原始升级包的路径。

UNCRYPT_STATUS = "/cache/recovery/uncrypt_status";  对升级包uncrypt操作的状态结果。

UNCRYPT_SOCKET = "uncrypt";    使用 /dev/socket/uncrypt 通信

static int write_at_offset(unsigned char* buffer, size_t size, int wfd, off64_t offset) { if (TEMP_FAILURE_RETRY(lseek64(wfd, offset, SEEK_SET)) == -1) { PLOG(ERROR) << "error seeking to offset " << offset; return -1; } if (!android::base::WriteFully(wfd, buffer, size)) { PLOG(ERROR) << "error writing offset " << offset; return -1; } return 0; }

写长度为size的buffer数据到wfd偏移offset地方

static void add_block_to_ranges(std::vector<int>& ranges, int new_block) { if (!ranges.empty() && new_block == ranges.back()) { // If the new block comes immediately after the current range, // all we have to do is extend the current range. ++ranges.back(); } else { // We need to start a new range. ranges.push_back(new_block); ranges.push_back(new_block + 1); } }

生成升级包的block块的稀疏列表, 比如1001 1004, 如果new block为1004, 则稀疏范围为1001 1005, 如果new block非1004,比如为1120, 则稀疏列表为 1001 1004, 1120 1121。

1001 1004表示为1001 1002 1003三个block,不包含1004

static struct fstab* read_fstab() { fstab = fs_mgr_read_fstab_default(); if (!fstab) { LOG(ERROR) << "failed to read default fstab"; return NULL; } return fstab; }

读取分区挂载表

static const char* find_block_device(const char* path, bool* encryptable, bool* encrypted, bool *f2fs_fs) { // Look for a volume whose mount point is the prefix of path and // return its block device. Set encrypted if it's currently // encrypted. // ensure f2fs_fs is set to 0 first. if (f2fs_fs) *f2fs_fs = false; for (int i = 0; i < fstab->num_entries; ++i) { struct fstab_rec* v = &fstab->recs[i]; if (!v->mount_point) { continue; } int len = strlen(v->mount_point); if (strncmp(path, v->mount_point, len) == 0 && (path[len] == '/' || path[len] == 0)) { *encrypted = false; *encryptable = false; if (fs_mgr_is_encryptable(v) || fs_mgr_is_file_encrypted(v)) { *encryptable = true; if (android::base::GetProperty("ro.crypto.state", "") == "encrypted") { *encrypted = true; } } if (f2fs_fs && strcmp(v->fs_type, "f2fs") == 0) *f2fs_fs = true; return v->blk_device; } } return NULL; }

通过升级包路径(/data/xxx_ota_20180823.zip)获取升级包对应的device(/dev/block/data),并且通过解析fstab判断(data)分区是否加密,*encrypted = true; 是否支持加密, *encryptable = true;

static bool write_status_to_socket(int status, int socket) { // If socket equals -1, uncrypt is in debug mode without socket communication. // Skip writing and return success. if (socket == -1) { return true; } int status_out = htonl(status); return android::base::WriteFully(socket, &status_out, sizeof(int)); }

通过socket保存uncrypt status

// Parse uncrypt_file to find the update package name. static bool find_uncrypt_package(const std::string& uncrypt_path_file, std::string* package_name) { CHECK(package_name != nullptr); std::string uncrypt_path; if (!android::base::ReadFileToString(uncrypt_path_file, &uncrypt_path)) { PLOG(ERROR) << "failed to open \"" << uncrypt_path_file << "\""; return false; } // Remove the trailing '\n' if present. *package_name = android::base::Trim(uncrypt_path); return true; }

通过读取/cache/recovery/uncrypt_file 获取原始升级包名字

static int retry_fibmap(const int fd, const char* name, int* block, const int head_block) { CHECK(block != nullptr); for (size_t i = 0; i < FIBMAP_RETRY_LIMIT; i++) { if (fsync(fd) == -1) { PLOG(ERROR) << "failed to fsync \"" << name << "\""; return kUncryptFileSyncError; } if (ioctl(fd, FIBMAP, block) != 0) { PLOG(ERROR) << "failed to find block " << head_block; return kUncryptIoctlError; } if (*block != 0) { return kUncryptNoError; } sleep(1); } LOG(ERROR) << "fibmap of " << head_block << "always returns 0"; return kUncryptIoctlError; }

通过 ioctl(fd, FIBMAP, block) 调用,获取升级包的每个block的数据,在 /dev/block/data的实际存储数据的block对应的索引。尝试三次后返回失败。

static int produce_block_map(const char* path, const char* map_file, const char* blk_dev, bool encrypted, bool f2fs_fs, int socket) { std::string err; if (!android::base::RemoveFileIfExists(map_file, &err)) { LOG(ERROR) << "failed to remove the existing map file " << map_file << ": " << err; return kUncryptFileRemoveError; } std::string tmp_map_file = std::string(map_file) + ".tmp"; android::base::unique_fd mapfd(open(tmp_map_file.c_str(), O_WRONLY | O_CREAT, S_IRUSR | S_IWUSR)); if (mapfd == -1) { PLOG(ERROR) << "failed to open " << tmp_map_file; return kUncryptFileOpenError; } // Make sure we can write to the socket. if (!write_status_to_socket(0, socket)) { LOG(ERROR) << "failed to write to socket " << socket; return kUncryptSocketWriteError; } struct stat sb; if (stat(path, &sb) != 0) { LOG(ERROR) << "failed to stat " << path; return kUncryptFileStatError; } LOG(INFO) << " block size: " << sb.st_blksize << " bytes"; int blocks = ((sb.st_size-1) / sb.st_blksize) + 1; LOG(INFO) << " file size: " << sb.st_size << " bytes, " << blocks << " blocks"; std::vector<int> ranges; std::string s = android::base::StringPrintf("%s\n%" PRId64 " %" PRId64 "\n", blk_dev, static_cast<int64_t>(sb.st_size), static_cast<int64_t>(sb.st_blksize)); if (!android::base::WriteStringToFd(s, mapfd)) { PLOG(ERROR) << "failed to write " << tmp_map_file; return kUncryptWriteError; } std::vector<std::vector<unsigned char>> buffers; if (encrypted) { buffers.resize(WINDOW_SIZE, std::vector<unsigned char>(sb.st_blksize)); } int head_block = 0; int head = 0, tail = 0; android::base::unique_fd fd(open(path, O_RDONLY)); if (fd == -1) { PLOG(ERROR) << "failed to open " << path << " for reading"; return kUncryptFileOpenError; } android::base::unique_fd wfd; if (encrypted) { wfd.reset(open(blk_dev, O_WRONLY)); if (wfd == -1) { PLOG(ERROR) << "failed to open " << blk_dev << " for writing"; return kUncryptBlockOpenError; } } #ifndef F2FS_IOC_SET_DONTMOVE #ifndef F2FS_IOCTL_MAGIC #define F2FS_IOCTL_MAGIC 0xf5 #endif #define F2FS_IOC_SET_DONTMOVE _IO(F2FS_IOCTL_MAGIC, 13) #endif if (f2fs_fs && ioctl(fd, F2FS_IOC_SET_DONTMOVE) < 0) { PLOG(ERROR) << "Failed to set non-movable file for f2fs: " << path << " on " << blk_dev; return kUncryptIoctlError; } off64_t pos = 0; int last_progress = 0; while (pos < sb.st_size) { // Update the status file, progress must be between [0, 99]. int progress = static_cast<int>(100 * (double(pos) / double(sb.st_size))); if (progress > last_progress) { last_progress = progress; write_status_to_socket(progress, socket); } if ((tail+1) % WINDOW_SIZE == head) { // write out head buffer int block = head_block; if (ioctl(fd, FIBMAP, &block) != 0) { PLOG(ERROR) << "failed to find block " << head_block; return kUncryptIoctlError; } if (block == 0) { LOG(ERROR) << "failed to find block " << head_block << ", retrying"; int error = retry_fibmap(fd, path, &block, head_block); if (error != kUncryptNoError) { return error; } } add_block_to_ranges(ranges, block); if (encrypted) { if (write_at_offset(buffers[head].data(), sb.st_blksize, wfd, static_cast<off64_t>(sb.st_blksize) * block) != 0) { return kUncryptWriteError; } } head = (head + 1) % WINDOW_SIZE; ++head_block; } // read next block to tail if (encrypted) { size_t to_read = static_cast<size_t>( std::min(static_cast<off64_t>(sb.st_blksize), sb.st_size - pos)); if (!android::base::ReadFully(fd, buffers[tail].data(), to_read)) { PLOG(ERROR) << "failed to read " << path; return kUncryptReadError; } pos += to_read; } else { // If we're not encrypting; we don't need to actually read // anything, just skip pos forward as if we'd read a // block. pos += sb.st_blksize; } tail = (tail+1) % WINDOW_SIZE; } while (head != tail) { // write out head buffer int block = head_block; if (ioctl(fd, FIBMAP, &block) != 0) { PLOG(ERROR) << "failed to find block " << head_block; return kUncryptIoctlError; } if (block == 0) { LOG(ERROR) << "failed to find block " << head_block << ", retrying"; int error = retry_fibmap(fd, path, &block, head_block); if (error != kUncryptNoError) { return error; } } add_block_to_ranges(ranges, block); if (encrypted) { if (write_at_offset(buffers[head].data(), sb.st_blksize, wfd, static_cast<off64_t>(sb.st_blksize) * block) != 0) { return kUncryptWriteError; } } head = (head + 1) % WINDOW_SIZE; ++head_block; } if (!android::base::WriteStringToFd( android::base::StringPrintf("%zu\n", ranges.size() / 2), mapfd)) { PLOG(ERROR) << "failed to write " << tmp_map_file; return kUncryptWriteError; } for (size_t i = 0; i < ranges.size(); i += 2) { if (!android::base::WriteStringToFd( android::base::StringPrintf("%d %d\n", ranges[i], ranges[i+1]), mapfd)) { PLOG(ERROR) << "failed to write " << tmp_map_file; return kUncryptWriteError; } } if (fsync(mapfd) == -1) { PLOG(ERROR) << "failed to fsync \"" << tmp_map_file << "\""; return kUncryptFileSyncError; } if (close(mapfd.release()) == -1) { PLOG(ERROR) << "failed to close " << tmp_map_file; return kUncryptFileCloseError; } if (encrypted) { if (fsync(wfd) == -1) { PLOG(ERROR) << "failed to fsync \"" << blk_dev << "\""; return kUncryptFileSyncError; } if (close(wfd.release()) == -1) { PLOG(ERROR) << "failed to close " << blk_dev; return kUncryptFileCloseError; } } if (rename(tmp_map_file.c_str(), map_file) == -1) { PLOG(ERROR) << "failed to rename " << tmp_map_file << " to " << map_file; return kUncryptFileRenameError; } // Sync dir to make rename() result written to disk. std::string file_name = map_file; std::string dir_name = dirname(&file_name[0]); android::base::unique_fd dfd(open(dir_name.c_str(), O_RDONLY | O_DIRECTORY)); if (dfd == -1) { PLOG(ERROR) << "failed to open dir " << dir_name; return kUncryptFileOpenError; } if (fsync(dfd) == -1) { PLOG(ERROR) << "failed to fsync " << dir_name; return kUncryptFileSyncError; } if (close(dfd.release()) == -1) { PLOG(ERROR) << "failed to close " << dir_name; return kUncryptFileCloseError; } return 0; }

这个是最核心的函数了,主要就是通过这个函数来完成稀疏列表的生成,我们先看下函数的参数:

const char* path:  升级包路径,eg:/data/xxxx.zip

const char* map_file: map文件, eg:/cache/recovery/block.map

const char* blk_dev:    device设备, eg: /dev/block/data

bool encrypted:  是否加密

bool f2fs_fs: 是否是f2fs

int socket: socket句柄

把升级包/data/xxxx.zip生成稀疏的描述文件,保存在/cache/recovery/block.map, 即本函数的目的。

函数代码比较多,从上至下,主要的功能如下:

(1)删除/cache/recovery/block.map, 新建/cache/recovery/block.map.tmp文件

(2)确认对socket句柄对应的/dev/socket/uncrypt 有写的权限

(3)确认升级包存在

(4)block.map第一行保存为:/dev/block/data

                          第二行保存为:352268727 4096    (升级包大小, block大小)

(5)申请 5个block size大小的buffer空间。

(6)打开升级包(/data/xxxx.zip),句柄为fd, 打开device /dev/block/data,句柄为wfd。

(7)循环按照block size大小,通过偏移指定的block,获取每个block数据在device的实际block索引,保存升级包的实际存储block的稀疏列表。 如果data分区是加密的,那么每次获取每个block实际索引时,读取解密后的block数据到buffer, 每当有5个block数据时,然后把buffer数据写到实际的对应的索引block里。这样实际索引的block里存储的就是解密后的数据。

(8)最后把不足5个block数据的buffer写到对应的实际的block中去,这样稀疏列表包含的block中保存的就是解密后的升级包数据。

(9)把稀疏列表写到/cache/recovery/block.map.tmp

(10)关闭相关所有的句柄,/cache/recovery/block.map.tmp重名为/cache/recovery/block.map,fsync数据同步到磁盘。

static int uncrypt(const char* input_path, const char* map_file, const int socket) { LOG(INFO) << "update package is \"" << input_path << "\""; // Turn the name of the file we're supposed to convert into an absolute path, so we can find // what filesystem it's on. char path[PATH_MAX+1]; if (realpath(input_path, path) == nullptr) { PLOG(ERROR) << "failed to convert \"" << input_path << "\" to absolute path"; return kUncryptRealpathFindError; } bool encryptable; bool encrypted; bool f2fs_fs; const char* blk_dev = find_block_device(path, &encryptable, &encrypted, &f2fs_fs); if (blk_dev == nullptr) { LOG(ERROR) << "failed to find block device for " << path; return kUncryptBlockDeviceFindError; } // If the filesystem it's on isn't encrypted, we only produce the // block map, we don't rewrite the file contents (it would be // pointless to do so). LOG(INFO) << "encryptable: " << (encryptable ? "yes" : "no"); LOG(INFO) << " encrypted: " << (encrypted ? "yes" : "no"); // Recovery supports installing packages from 3 paths: /cache, // /data, and /sdcard. (On a particular device, other locations // may work, but those are three we actually expect.) // // On /data we want to convert the file to a block map so that we // can read the package without mounting the partition. On /cache // and /sdcard we leave the file alone. if (strncmp(path, "/data/", 6) == 0) { LOG(INFO) << "writing block map " << map_file; return produce_block_map(path, map_file, blk_dev, encrypted, f2fs_fs, socket); } return 0; }

uncrypt的函数接口:

 (1)获取升级包的绝对路径

(2)通过升级包路径,获取升级包存储的device(/dev/block/data)

(3)判断路径,如果存储在/data 分区,则调用produce_block_map函数生成block.map

static void log_uncrypt_error_code(UncryptErrorCode error_code) { if (!android::base::WriteStringToFile(android::base::StringPrintf( "uncrypt_error: %d\n", error_code), UNCRYPT_STATUS)) { PLOG(WARNING) << "failed to write to " << UNCRYPT_STATUS; } }

把uncrypt的错误code写到/cache/recovery/uncrypt_status

static bool uncrypt_wrapper(const char* input_path, const char* map_file, const int socket) { // Initialize the uncrypt error to kUncryptErrorPlaceholder. log_uncrypt_error_code(kUncryptErrorPlaceholder); std::string package; if (input_path == nullptr) { if (!find_uncrypt_package(UNCRYPT_PATH_FILE, &package)) { write_status_to_socket(-1, socket); // Overwrite the error message. log_uncrypt_error_code(kUncryptPackageMissingError); return false; } input_path = package.c_str(); } CHECK(map_file != nullptr); auto start = std::chrono::system_clock::now(); int status = uncrypt(input_path, map_file, socket); std::chrono::duration<double> duration = std::chrono::system_clock::now() - start; int count = static_cast<int>(duration.count()); std::string uncrypt_message = android::base::StringPrintf("uncrypt_time: %d\n", count); if (status != 0) { // Log the time cost and error code if uncrypt fails. uncrypt_message += android::base::StringPrintf("uncrypt_error: %d\n", status); if (!android::base::WriteStringToFile(uncrypt_message, UNCRYPT_STATUS)) { PLOG(WARNING) << "failed to write to " << UNCRYPT_STATUS; } write_status_to_socket(-1, socket); return false; } if (!android::base::WriteStringToFile(uncrypt_message, UNCRYPT_STATUS)) { PLOG(WARNING) << "failed to write to " << UNCRYPT_STATUS; } write_status_to_socket(100, socket); return true; } 

uncrypt功能的入口函数, 根据 input_path 指定路径的升级包(如果input_path为空, 读取/cache/recovery/uncrypt_file),生成map_file文件。

static bool clear_bcb(const int socket) { std::string err; if (!clear_bootloader_message(&err)) { LOG(ERROR) << "failed to clear bootloader message: " << err; write_status_to_socket(-1, socket); return false; } write_status_to_socket(100, socket); return true; } static bool setup_bcb(const int socket) { // c5. receive message length int length; if (!android::base::ReadFully(socket, &length, 4)) { PLOG(ERROR) << "failed to read the length"; return false; } length = ntohl(length); // c7. receive message std::string content; content.resize(length); if (!android::base::ReadFully(socket, &content[0], length)) { PLOG(ERROR) << "failed to read the message"; return false; } LOG(INFO) << " received command: [" << content << "] (" << content.size() << ")"; std::vector<std::string> options = android::base::Split(content, "\n"); std::string wipe_package; for (auto& option : options) { if (android::base::StartsWith(option, "--wipe_package=")) { std::string path = option.substr(strlen("--wipe_package=")); if (!android::base::ReadFileToString(path, &wipe_package)) { PLOG(ERROR) << "failed to read " << path; return false; } option = android::base::StringPrintf("--wipe_package_size=%zu", wipe_package.size()); } } // c8. setup the bcb command std::string err; if (!write_bootloader_message(options, &err)) { LOG(ERROR) << "failed to set bootloader message: " << err; write_status_to_socket(-1, socket); return false; } if (!wipe_package.empty() && !write_wipe_package(wipe_package, &err)) { PLOG(ERROR) << "failed to set wipe package: " << err; write_status_to_socket(-1, socket); return false; } // c10. send "100" status write_status_to_socket(100, socket); return true; }

uncrypt --clear-bcb  清除bcb数据

uncrypt --setup-bcb 设置bcb数据

static void usage(const char* exename) { fprintf(stderr, "Usage of %s:\n", exename); fprintf(stderr, "%s [<package_path> <map_file>] Uncrypt ota package.\n", exename); fprintf(stderr, "%s --clear-bcb Clear BCB data in misc partition.\n", exename); fprintf(stderr, "%s --setup-bcb Setup BCB data by command file.\n", exename); } int main(int argc, char** argv) { ...... }

usage 与 main 函数就不再解释了,没啥好解释的了,到此uncrypt.cpp所有的功能函数都解释了。

 

我们使用uncrypt生成一个block.map试试

uncrypt /data/ota.zip /cache/recovery/block.map 

console:/ # cat /cache/recovery/block.map /dev/block/data 352268727 4096 7 1098851 1098867 38064 38080 38112 38144 38208 38400 43520 63744 65536 98304 100352 133108

即把/data/ota.zip 生成了 /cache/recovery/block.map文件, 通过/cache/recovery/block.map中的block稀疏描述,就可以获取升级包升级了。


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM