github地址:https://github.com/Lextal/pspnet-pytorch/blob/master/pspnet.py
PSP模塊示意圖如下

代碼如下
class PSPModule(nn.Module):
def __init__(self, features, out_features=1024, sizes=(1, 2, 3, 6)):
super().__init__()
self.stages = []
self.stages = nn.ModuleList([self._make_stage(features, size) for size in sizes])
self.bottleneck = nn.Conv2d(features * (len(sizes) + 1), out_features, kernel_size=1)
self.relu = nn.ReLU()
def _make_stage(self, features, size):
prior = nn.AdaptiveAvgPool2d(output_size=(size, size))
conv = nn.Conv2d(features, features, kernel_size=1, bias=False)
return nn.Sequential(prior, conv)
def forward(self, feats):
h, w = feats.size(2), feats.size(3)
priors = [F.upsample(input=stage(feats), size=(h, w), mode='bilinear') for stage in self.stages] + [feats]
bottle = self.bottleneck(torch.cat(priors, 1))
return self.relu(bottle)
此外,我基於自己的工作稍加修改,也給出一個3D版本。改動有幾處,一是3d卷積和池化,二是上采樣由雙線性插值切換為trilinear,不知是否翻譯為三線性插值,三是我對池化部分輸出尺寸的修改,上采樣到輸入的一半,同時與普通池化相結合,不過,這樣有沒有效果,我還沒試過
class PSPModule(nn.Module):
def __init__(self, features, sizes=(1, 2, 3, 6)):
super(PSPModule, self).__init__()
self.stages = []
self.stages = nn.ModuleList([self._make_stage(features, size) for size in sizes])
self.bottleneck = nn.Conv3d(features * (1 + 1), features, kernel_size=1)
self.relu = nn.ReLU()
def _make_stage(self, features, size):
prior = nn.AdaptiveAvgPool3d(output_size=(size, size, size))
conv = nn.Conv3d(features, features / 4, kernel_size=1, bias=False)
return nn.Sequential(prior, conv)
def forward(self, x, maxpool_x):
h, w, l = x.size(2), x.size(3), x.size(4)
priors = [F.upsample(input=stage(x), size=(h / 2, w / 2, l/2), mode='trilinear') for stage in self.stages] + [maxpool_x]
bottle = self.bottleneck(torch.cat(priors, 1))
print(bottle.size())
return self.relu(bottle)
