pandas對時間列分組求diff遇到的問題


例子:

df = pd.DataFrame()
df['A'] = [1, 1, 2]
df['B'] = [datetime.date(2018, 1, 2), datetime.date(2018, 1, 3), datetime.date(2018, 1, 3)]
df['C'] = df.groupby('A').B.diff()
df['C'] = df.C.dt.days

 

報錯:

Traceback (most recent call last):
  File "D:\python_virtualenv\common\lib\site-packages\pandas-0.20.3-py3.6-win-amd64.egg\pandas\core\series.py", line 2820, in _make_dt_accessor
    return maybe_to_datetimelike(self)
  File "D:\python_virtualenv\common\lib\site-packages\pandas-0.20.3-py3.6-win-amd64.egg\pandas\core\indexes\accessors.py", line 84, in maybe_to_datetimelike
    "datetimelike index".format(type(data)))
TypeError: cannot convert an object of type <class 'pandas.core.series.Series'> to a datetimelike index

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "D:/學習/pandas_test/pandas_learn_20190102.py", line 49, in <module>
    test2()
  File "D:/學習/pandas_test/pandas_learn_20190102.py", line 32, in test2
    df['C'] = df.C.dt.days
  File "D:\python_virtualenv\common\lib\site-packages\pandas-0.20.3-py3.6-win-amd64.egg\pandas\core\generic.py", line 3077, in __getattr__
    return object.__getattribute__(self, name)
  File "D:\python_virtualenv\common\lib\site-packages\pandas-0.20.3-py3.6-win-amd64.egg\pandas\core\base.py", line 243, in __get__
    return self.construct_accessor(instance)
  File "D:\python_virtualenv\common\lib\site-packages\pandas-0.20.3-py3.6-win-amd64.egg\pandas\core\series.py", line 2822, in _make_dt_accessor
    raise AttributeError("Can only use .dt accessor with datetimelike "
AttributeError: Can only use .dt accessor with datetimelike values

 

原因:
分組求diff后的結果是:

A B C
0 1 2018-01-02 NaT
1 1 2018-01-03 1 days 00:00:00
2 2 2018-01-03 NaN

類型是:

A int64
B object
C object
dtype: object

預想的類型是:

A int64
B object
C timedelta64[ns]
dtype: object

解決:
原本嘗試使用astype強制將object列,轉成timedelta列

df['C'] = df.C.astype(pd.Timedelta)

這句代碼不會報錯,但是C列的類型不會改變,沒有作用。

最后有兩種處理方式:
提前定義B列為時間列:

df = pd.DataFrame()
df['A'] = [1, 1, 2]
df['B'] = [datetime.date(2018, 1, 2), datetime.date(2018, 1, 3), datetime.date(2018, 1, 3)]
df.B = pd.to_datetime(df.B)
df['C'] = df.groupby('A').B.diff()
df['C'] = df.C.dt.days

增加類型轉換:

df = pd.DataFrame()
df['A'] = [1, 1, 2]
df['B'] = [datetime.date(2018, 1, 2), datetime.date(2018, 1, 3), datetime.date(2018, 1, 3)]
df['C'] = df.groupby('A').B.diff()
df['C'] = pd.to_timedelta(df.C, unit='d').dt.days


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM