kubernetes學習筆記之十二:資源指標API及自定義指標API


第一章、前言

以前是用heapster來收集資源指標才能看,現在heapster要廢棄了
從1
.8以后引入了資源api指標監視 資源指標:metrics-server(核心指標) 自定義指標:prometheus,k8s-prometheus-adapter(將Prometheus采集的數據轉換為指標格式)     k8s的中的prometheus需要k8s-prometheus-adapter轉換一下才可以使用 新一代架構:     核心指標流水線:         kubelet,metrics-service以及API service提供api組成;cpu累計使用率,內存實時使用率,pod的資源占用率和容器磁盤占用率;     監控流水線:         用於從系統收集各種指標數據並提供終端用戶,存儲系統以及HPA,他們包括核心指標以及很多非核心指標,非核心指標本身不能被k8s解析

第二章、安裝部署metrics-server

1、下載yaml文件,並安裝

項目地址:https://github.com/kubernetes/kubernetes/tree/master/cluster/addons/metrics-server,選擇與版本對應的分支,我的是v1.10.0,所以這里我選擇v1.10.0分支

[root@k8s-master_01 manifests]# mkdir metrics-server [root@k8s-master_01 manifests]# cd metrics-server [root@k8s-master_01 metrics-server]# for file in auth-delegator.yaml auth-reader.yaml metrics-apiservice.yaml metrics-server-deployment.yaml metrics-server-service.yaml resource-reader.yaml;do wget https://raw.githubusercontent.com/kubernetes/kubernetes/v1.10.0/cluster/addons/metrics-server/$file;done #記住,下載raw格式的文件
[root@k8s-master_01 metrics-server]# grep image: ./* #查看使用的鏡像,如果可以科學上網,那么忽略,如果不可用那么需要提前下載,通過修改配置文件或修改鏡像的名稱的方式加載鏡像,鏡像可以到阿里雲上去搜索 ./metrics-server-deployment.yaml: image: k8s.gcr.io/metrics-server-amd64:v0.2.1 ./metrics-server-deployment.yaml: image: k8s.gcr.io/addon-resizer:1.8.1 [root@k8s-node_01 ~]# docker pull registry.cn-hangzhou.aliyuncs.com/criss/addon-resizer:1.8.1 #手動在所有的node節點上下載鏡像,注意版本號沒有v [root@k8s-node_01 ~]# docker pull registry.cn-hangzhou.aliyuncs.com/k8s-kernelsky/metrics-server-amd64:v0.2.1 [root@k8s-master_01 metrics-server]# grep image: metrics-server-deployment.yaml image: registry.cn-hangzhou.aliyuncs.com/k8s-kernelsky/metrics-server-amd64:v0.2.1 image: registry.cn-hangzhou.aliyuncs.com/criss/addon-resizer:1.8.1 [root@k8s-master_01 metrics-server]# kubectl apply -f . [root@k8s-master_01 metrics-server]# kubectl get pod -n kube-system 

2、驗證

[root@k8s-master01 ~]# kubectl api-versions |grep metrics
metrics.k8s.io/v1beta1
[root@k8s-node01 ~]# kubectl proxy --port=8080 #重新打開一個終端,啟動代理功能 [root@k8s-master_01 metrics-server]# curl http://localhost:8080/apis/metrics.k8s.io/v1beta1 #查看這個資源組包含哪些組件 [root@k8s-master_01 metrics-server]# curl http://localhost:8080/apis/metrics.k8s.io/v1beta1/pods #可能需要等待一會在會有數據 [root@k8s-master_01 metrics-server]# curl http://localhost:8080/apis/metrics.k8s.io/v1beta1/nodes [root@k8s-node01 ~]# kubectl top node NAME CPU(cores) CPU% MEMORY(bytes) MEMORY% k8s-master01 176m 4% 3064Mi 39% k8s-node01 62m 1% 4178Mi 54% k8s-node02 65m 1% 2141Mi 27% [root@k8s-node01 ~]# kubectl top pods NAME CPU(cores) MEMORY(bytes) node-affinity-pod 0m 1Mi

3.注意事項

1.#在更新的版本中,如v1.11及以上會出現問題,這是因為metric-service默認從kubernetes的summary_api中獲取數據,而summary_api默認使用10255端口來獲
取數據,但是10255是一個http協議的端口,可能官方認為http協議不安全所以封禁了10255端口改為使用10250端口,而10250是一個https協議端口,所以我們需要修改一下連接方式:
由  - --source=kubernetes.summary_api:''
修改為  - --source=kubernetes.summary_api:https://kubernetes.default?kubeletHttps=true&kubeletPort=10250&insecure-true  #表示雖然我使用https協議來通信,並且端口也是10250,但是如果證書不能認證依然可以通過非安全不加密的方式來通信
[root@k8s-node01 deploy]# grep source=kubernetes  metrics-server-deployment.yaml 
2.[root@k8s-node01 deploy]# grep nodes/stats resource-reader.yaml #在新的版本中,授權文內沒有 node/stats 的權限,需要手動去添加 [root@k8s-node01 deploy]# cat resource-reader.yaml 
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: system:metrics-server
rules:
- apiGroups:
  - ""
  resources:
  - pods
  - nodes
  - nodes/stats  #添加這一行
  - namespaces
3.在1.12.3版本中測試發現,需要進行如下修改才能成功部署(權限依然需要修改,其他版本暫未測試) [root@k8s-master-01 metrics-server]# vim metrics-server-deployment.yaml
command:   #metrics-server命令參數修改為如下參數
  - /metrics-server
  - --metric-resolution=30s
  - --kubelet-port=10250
  - --kubelet-insecure-tls
  - --kubelet-preferred-address-types=InternalIP
command:    #metrics-server-nanny 命令參數修改為如下參數
  - /pod_nanny
  - --config-dir=/etc/config
  - --cpu=40m
  - --extra-cpu=0.5m
  - --memory=40Mi
  - --extra-memory=4Mi
  - --threshold=5
  - --deployment=metrics-server-v0.3.1
  - --container=metrics-server
  - --poll-period=300000
  - --estimator=exponential

 第三章、安裝部署prometheus

項目地址:https://github.com/kubernetes/kubernetes/tree/master/cluster/addons/prometheus(由於prometheus只有v1.11.0及以上才有,所有我選擇v1.11.0來部署)

1.下載yaml文件及部署前操作

[root@k8s-node01 ~]# cd /mnt/ [root@k8s-node01 mnt]# git clone https://github.com/kubernetes/kubernetes.git #我嫌麻煩就直接克隆kubernetes整個項目了
[root@k8s-node01 mnt]# cd kubernetes/cluster/addons/prometheus/ [root@k8s-node01 prometheus]# git checkout v1.11.0 [root@k8s-node01 prometheus]# cd .. [root@k8s-node01 addons]# cp -r prometheus /root/manifests/ [root@k8s-node01 manifests]# cd prometheus/ [root@k8s-node01 prometheus]# grep -w  "namespace: kube-system" ./* #默認prometheus使用的是kube-system名稱空間,我們把它單獨部署到一個名稱空間中,方便之后的管理 ./alertmanager-configmap.yaml: namespace: kube-system ...... [root@k8s-node01 prometheus]# sed -i 's/namespace: kube-system/namespace\: k8s-monitor/g' ./* [root@k8s-node01 prometheus]# grep storage: ./* #安裝需要兩個pv,等下我們需要創建一下 ./alertmanager-pvc.yaml: storage: "2Gi" ./prometheus-statefulset.yaml: storage: "16Gi" [root@k8s-node01 prometheus]# cat pv.yaml #注意第二pv的storageClassName apiVersion: v1 kind: PersistentVolume metadata: name: alertmanager spec: capacity: storage: 5Gi accessModes: - ReadWriteOnce - ReadWriteMany persistentVolumeReclaimPolicy: Recycle nfs: path: /data/volumes/v1 server: 172.16.150.158 --- apiVersion: v1 kind: PersistentVolume metadata: name: standard spec: capacity: storage: 25Gi accessModes: - ReadWriteOnce persistentVolumeReclaimPolicy: Recycle storageClassName: standard #storageClassName與prometheus-statefulset.yaml中volumeClaimTemplates下定義的需要保持一致 nfs: path: /data/volumes/v2 server: 172.16.150.158
[root@k8s-node01 prometheus]# kubectl create namespace k8s-monitor [root@k8s-node01 prometheus]# mkdir node-exporter kube-state-metrics alertmanager prometheus #將每個組件單獨放入一個目錄中,方便部署及管理 [root@k8s-node01 prometheus]# mv node-exporter-* node-exporter [root@k8s-node01 prometheus]# mv alertmanager-* alertmanager [root@k8s-node01 prometheus]# mv kube-state-metrics-* kube-state-metrics [root@k8s-node01 prometheus]# mv prometheus-* prometheus

2.安裝node-exporter(用於收集節點的數據指標)

[root@k8s-node01 prometheus]# grep -r image:  node-exporter/* node-exporter/node-exporter-ds.yml: image: "prom/node-exporter:v0.15.2" #非官方鏡像,不能科學上網的也可以下載,所以不需要提前下載 [root@k8s-node01 prometheus]# kubectl apply -f node-exporter/ daemonset.extensions "node-exporter" created service "node-exporter" created [root@k8s-node01 prometheus]# kubectl get pod -n k8s-monitor NAME READY STATUS RESTARTS AGE node-exporter-l5zdw 1/1 Running 0 1m node-exporter-vwknx 1/1 Running 0 1m

3.安裝prometheus

[root@k8s-master_01 prometheus]# kubectl apply -f pv.yaml persistentvolume "alertmanager" configured persistentvolume "standard" created [root@k8s-master_01 prometheus]# kubectl get pv NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE alertmanager 5Gi RWO,RWX Recycle Available 9s standard 25Gi RWO Recycle Available 9s [root@k8s-node01 prometheus]# grep -i image prometheus/* #查看鏡像是否需要下載 [root@k8s-node01 prometheus]# vim prometheus-service.yaml #默認prometheus的service端口類型為ClusterIP,為了可以集群外訪問,修改為NodePort ...
type: NodePort ports: - name: http port: 9090 protocol: TCP targetPort: 9090 nodePort: 30090 ... [root@k8s-node01 prometheus]# kubectl apply -f prometheus/ [root@k8s-node01 prometheus]# kubectl get pod -n k8s-monitor NAME READY STATUS RESTARTS AGE node-exporter-l5zdw 1/1 Running 0 24m node-exporter-vwknx 1/1 Running 0 24m prometheus-0 2/2 Running 0 1m [root@k8s-node01 prometheus]# kubectl get svc -n k8s-monitor NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE node-exporter ClusterIP None <none> 9100/TCP 25m prometheus NodePort 10.96.9.121 <none> 9090:30090/TCP 22m [root@k8s-master_01 prometheus]# kubectl get pv NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE alertmanager 5Gi RWO,RWX Recycle Available 1h standard 25Gi RWO Recycle Bound k8s-monitor/prometheus-data-prometheus-0 standard 1h

訪問prometheus(node節點IP:端口)

4.部署metrics適配器(將prometheus數據轉換為k8s可以識別的數據)

[root@k8s-node01 kube-state-metrics]# grep image: ./* ./kube-state-metrics-deployment.yaml: image: quay.io/coreos/kube-state-metrics:v1.3.0 ./kube-state-metrics-deployment.yaml: image: k8s.gcr.io/addon-resizer:1.7 [root@k8s-node02 ~]# docker pull registry.cn-hangzhou.aliyuncs.com/ccgg/addon-resizer:1.7 [root@k8s-node01 kube-state-metrics]# vim kube-state-metrics-deployment.yaml #修改鏡像地址 [root@k8s-node01 kube-state-metrics]# kubectl apply -f kube-state-metrics-deployment.yaml deployment.extensions "kube-state-metrics" configured [root@k8s-node01 kube-state-metrics]# kubectl get pod -n k8s-monitor NAME READY STATUS RESTARTS AGE kube-state-metrics-54849b96b4-dmqtk 2/2 Running 0 23s node-exporter-l5zdw 1/1 Running 0 2h node-exporter-vwknx 1/1 Running 0 2h prometheus-0 2/2 Running 0 1h

 5.部署k8s-prometheus-adapter(將數據輸出為一個API服務)

項目地址:https://github.com/DirectXMan12/k8s-prometheus-adapter

[root@k8s-master01 ~]# cd /etc/kubernetes/pki/
[root@k8s-master01 pki]#(umask 077; openssl genrsa -out serving.key 2048)
[root@k8s-master01 pki]#openssl req -new -key serving.key -out serving.csr -subj "/CN=serving" #CN必須為serving
[root@k8s-master01 pki]#openssl x509 -req -in serving.csr -CA ./ca.crt -CAkey ./ca.key  -CAcreateserial -out serving.crt -days 3650
[root@k8s-master01 pki]# kubectl create secret generic cm-adapter-serving-certs --from-file=serving.crt=./serving.crt --from-file=serving.key=./serving.key -n k8s-monitor #證書名稱必須為cm-adapter-serving-certs
[root@k8s-master01 pki]#kubectl get secret  -n k8s-monitor
[root@k8s-master01 pki]# cd
[root@k8s-node01 ~]# git clone https://github.com/DirectXMan12/k8s-prometheus-adapter.git [root@k8s-node01 ~]# cd k8s-prometheus-adapter/deploy/manifests/ [root@k8s-node01 manifests]# grep namespace: ./* #處理role-binding之外的namespace的名稱改為k8s-monitor [root@k8s-node01 manifests]# grep image: ./* #鏡像不需要下載 [root@k8s-node01 ~]# sed -i 's/namespace\: custom-metrics/namespace\: k8s-monitor/g' ./* #rolebinding的不要替換 [root@k8s-node01 ~]# kubectl apply -f ./ [root@k8s-node01 ~]# kubectl get pod -n k8s-monitor [root@k8s-node01 ~]#kubectl get svc -n k8s-monitor kubectl api-versions |grep custom

 第四章、部署prometheus+grafana

[root@k8s-master01 ~]# wget https://raw.githubusercontent.com/kubernetes-retired/heapster/master/deploy/kube-config/influxdb/grafana.yaml #找不到grafana的yaml文件,所以到heapster里面掏了一個下來用用
[root@k8s-master01 ~]#egrep -i "influxdb|namespace|nodeport" grafana.yaml #注釋掉influxdb環境變量,修改namespace及port類型 [root@k8s-master01 ~]#kubectl apply -f grafana.yaml [root@k8s-master01 ~]#kubectl get svc  -n k8s-monitor [root@k8s-master01 ~]#kubectl get pod -n k8s-monitor

登錄grafana,並修改數據源

配置數據源

點擊右側的Dashborads,可以導入grafana自帶的prometheus的模板

回到home下,下拉選擇對應的模板查看數據

例如:

但是,grafana自帶的模板和數據有些不匹配,我們可以去grafana官網去下載應用於k8s使用的模板,地址為:https://grafana.com/dashboards

訪問grafana官網搜索k8s相關模板,有時搜索框點擊沒有反應,可以直接在URL后面加上搜索內容即可

我們選擇kubernetes cluster(prometheus)作為測試

點擊需要下載的模板,並下載json文件

 下載完成后,導入文件

選擇上傳文件

導入后選擇數據源

 導入后展示的界面

 第五章、實現HPA  

1、使用v1版本測試

[root@k8s-master01 alertmanager]# kubectl api-versions |grep autoscaling autoscaling/v1 autoscaling/v2beta1 [root@k8s-master01 manifests]# cat deploy-demon.yaml apiVersion: v1 kind: Service metadata: name: myapp namespace: default spec: selector: app: myapp type: NodePort ports: - name: http port: 80 targetPort: 80 nodePort: 32222

--- apiVersion: apps/v1 kind: Deployment metadata: name: myapp-deploy spec: replicas: 2 selector: matchLabels: app: myapp template: metadata: labels: app: myapp spec: containers: - name: myapp image: ikubernetes/myapp:v2 ports: - name: httpd containerPort: 80 resources: requests: memory: "64Mi" cpu: "100m" limits: memory: "128Mi" cpu: "200m" [root@k8s-master01 manifests]# kubectl get svc NAME TYPE CLUSTER-IP      EXTERNAL-IP PORT(S) AGE kubernetes ClusterIP 10.96.0.1       <none>        443/TCP 47d my-nginx     NodePort    10.104.13.148   <none>        80:32008/TCP 19d myapp NodePort 10.100.76.180   <none>        80:32222/TCP 16s tomcat ClusterIP 10.106.222.72   <none>        8080/TCP,8009/TCP 19d [root@k8s-master01 manifests]# kubectl get pod NAME READY STATUS RESTARTS AGE myapp-deploy-5db497dbfb-h7zcb   1/1       Running   0 16s myapp-deploy-5db497dbfb-tvsf5   1/1       Running   0          16s

測試

[root@k8s-master01 manifests]# kubectl autoscale deployment myapp-deploy --min=1 --max=8 --cpu-percent=60 deployment.apps "myapp-deploy" autoscaled [root@k8s-master01 manifests]# kubectl get hpa NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE myapp-deploy   Deployment/myapp-deploy   <unknown>/60%   1         8         0 22s [root@k8s-master01 pod-dir]# yum install http-tools -y [root@k8s-master01 pod-dir]# ab -c 1000 -n 5000000 http://172.16.150.213:32222/index.html
[root@k8s-master01 ~]# kubectl describe hpa Name: myapp-deploy Namespace: default Labels: <none> Annotations: <none> CreationTimestamp: Sun, 16 Dec 2018 20:34:41 +0800 Reference: Deployment/myapp-deploy Metrics: ( current / target ) resource cpu on pods (as a percentage of request):  178% (178m) / 60% Min replicas: 1 Max replicas: 8 Conditions: Type Status Reason Message ----            ------  ------            ------- AbleToScale False BackoffBoth the time since the previous scale is still within both the downscale and upscale forbidden windows ScalingActive True ValidMetricFound the HPA was able to successfully calculate a replica count from cpu resource utilization (percentage of request) ScalingLimited True ScaleUpLimit the desired replica count is increasing faster than the maximum scale rate Events: Type Reason Age From Message ----    ------             ----  ----                       ------- Normal SuccessfulRescale 19m horizontal-pod-autoscaler  New size: 1; reason: All metrics below target Normal SuccessfulRescale 2m horizontal-pod-autoscaler  New size: 2; reason: cpu resource utilization (percentage of request) above target [root@k8s-master01 ~]# kubectl get pod NAME READY STATUS RESTARTS AGE myapp-deploy-5db497dbfb-6kssf   1/1       Running   0 2m myapp-deploy-5db497dbfb-h7zcb   1/1       Running   0 24m [root@k8s-master01 ~]# kubectl get hpa NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE myapp-deploy   Deployment/myapp-deploy   178%/60%   1         8         2          20m

2、使用v2beat1

[root@k8s-master01 pod-dir]# cat hpa-demo.yaml apiVersion: autoscaling/v2beta1 kind: HorizontalPodAutoscaler metadata: name: myapp-hpa-v2 spec: scaleTargetRef: apiVersion: apps/v1 kind: Deployment name: myapp-deploy minReplicas: 1 maxReplicas: 10 metrics: - type: Resource resource: name: cpu targetAverageUtilization: 55
  - type: Resource resource: name: memory targetAverageValue: 100Mi [root@k8s-master01 pod-dir]# kubectl delete hpa myapp-deploy horizontalpodautoscaler.autoscaling "myapp-deploy" deleted [root@k8s-master01 pod-dir]# kubectl apply -f hpa-demo.yaml horizontalpodautoscaler.autoscaling "myapp-hpa-v2" created [root@k8s-master01 pod-dir]# kubectl get hpa NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE myapp-hpa-v2   Deployment/myapp-deploy   <unknown>/100Mi, <unknown>/55%   1         10        0          6s

測試

[root@k8s-master01 ~]# kubectl describe hpa Name: myapp-hpa-v2 Namespace: default Labels: <none> Annotations: kubectl.kubernetes.io/last-applied-configuration={"apiVersion":"autoscaling/v2beta1","kind":"HorizontalPodAutoscaler","metadata":{"annotations":{},"name":"myapp-hpa-v2","namespace":"default"},"spec":{... CreationTimestamp: Sun, 16 Dec 2018 21:07:25 +0800 Reference: Deployment/myapp-deploy Metrics: ( current / target ) resource memory on pods: 1765376 / 100Mi resource cpu on pods (as a percentage of request):  200% (200m) / 55% Min replicas: 1 Max replicas: 10 Conditions: Type Status Reason Message ----            ------  ------              ------- AbleToScale True SucceededRescale the HPA controller was able to update the target scale to 4 ScalingActive True ValidMetricFound the HPA was able to successfully calculate a replica count from cpu resource utilization (percentage of request) ScalingLimited False DesiredWithinRange the desired count is within the acceptable range Events: Type Reason Age From Message ----    ------             ----  ----                       ------- Normal SuccessfulRescale 18s horizontal-pod-autoscaler  New size: 4; reason: cpu resource utilization (percentage of request) above target [root@k8s-master01 ~]# kubectl get pod NAME READY STATUS RESTARTS AGE myapp-deploy-5db497dbfb-5n885   1/1       Running   0 26s myapp-deploy-5db497dbfb-h7zcb   1/1       Running   0 40m myapp-deploy-5db497dbfb-z2tqd   1/1       Running   0 26s myapp-deploy-5db497dbfb-zkjhw   1/1       Running   0 26s [root@k8s-master01 ~]# kubectl describe hpa Name: myapp-hpa-v2 Namespace: default Labels: <none> Annotations: kubectl.kubernetes.io/last-applied-configuration={"apiVersion":"autoscaling/v2beta1","kind":"HorizontalPodAutoscaler","metadata":{"annotations":{},"name":"myapp-hpa-v2","namespace":"default"},"spec":{... CreationTimestamp: Sun, 16 Dec 2018 21:07:25 +0800 Reference: Deployment/myapp-deploy Metrics: ( current / target ) resource memory on pods: 1765376 / 100Mi resource cpu on pods (as a percentage of request):  0% (0) / 55% Min replicas: 1 Max replicas: 10 Conditions: Type Status Reason Message ----            ------  ------              ------- AbleToScale False BackoffBoth the time since the previous scale is still within both the downscale and upscale forbidden windows ScalingActive True ValidMetricFound the HPA was able to successfully calculate a replica count from memory resource ScalingLimited False DesiredWithinRange the desired count is within the acceptable range Events: Type Reason Age From Message ----    ------             ----  ----                       ------- Normal SuccessfulRescale 6m horizontal-pod-autoscaler  New size: 4; reason: cpu resource utilization (percentage of request) above target Normal SuccessfulRescale 34s horizontal-pod-autoscaler  New size: 1; reason: All metrics below target [root@k8s-master01 ~]# kubectl get pod NAME READY STATUS RESTARTS AGE myapp-deploy-5db497dbfb-h7zcb   1/1       Running   0          46m

3.使用v2beat1測試自定義選項

[root@k8s-master01 pod-dir]# cat  ../deploy-demon-metrics.yaml apiVersion: v1 kind: Service metadata: name: myapp namespace: default spec: selector: app: myapp type: NodePort ports: - name: http port: 80 targetPort: 80 nodePort: 32222

--- apiVersion: apps/v1 kind: Deployment metadata: name: myapp-deploy spec: replicas: 2 selector: matchLabels: app: myapp template: metadata: labels: app: myapp spec: containers: - name: myapp image: ikubernetes/metrics-app #測試鏡像 ports: - name: httpd containerPort: 80 [root@k8s-master01 pod-dir]# kubectl apply -f deploy-demon-metrics.yaml [root@k8s-master01 pod-dir]# cat hpa-custom.yaml apiVersion: autoscaling/v2beta1 kind: HorizontalPodAutoscaler metadata: name: myapp-hpa-v2 spec: scaleTargetRef: apiVersion: apps/v1 kind: Deployment name: myapp-deploy minReplicas: 1 maxReplicas: 10 metrics: - type: Pods #注意類型 pods: metricName: http_requests #容器中自定義的參數 targetAverageValue: 800m #m表示個數,即800個並發數 [root@k8s-master01 pod-dir]# kubectl apply -f hpa-custom.yaml [root@k8s-master01 pod-dir]# kubectl describe hpa myapp-hpa-v2 Name: myapp-hpa-v2 Namespace: default Labels: <none> Annotations: kubectl.kubernetes.io/last-applied-configuration={"apiVersion":"autoscaling/v2beta1","ks":{},"name":"myapp-hpa-v2","namespace":"default"},"spec":{... CreationTimestamp: Sun, 16 Dec 2018 22:09:32 +0800 Reference: Deployment/myapp-deploy Metrics: ( current / target ) "http_requests" on pods:  <unknown> / 800m Min replicas: 1 Max replicas: 10 Events: <none> [root@k8s-master01 pod-dir]# kubectl get hpa NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE myapp-hpa-v2   Deployment/myapp-deploy   <unknown>/800m   1         10        2          5m

測試:

#好像鏡像有點問題,待解決

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM