1.自定義指標-prometheus
node_exporter是agent;PromQL相當於sql語句來查詢數據;
k8s-prometheus-adapter:prometheus是不能直接解析k8s的指標的,需要借助k8s-prometheus-adapter轉換成api;
kube-state-metrics是用來整合數據的.
訪問:https://github.com/kubernetes/kubernetes/tree/master/cluster/addons/prometheus
git clone https://github.com/iKubernetes/k8s-prom.git cd k8s-prom && kubectl apply -f namespace.yaml # 部署node_exporter cd node_exporter/ && kubectl apply -f . # 部署prometheus,注釋掉資源限制limit, cd prometheus/ && vim prometheus-deploy.yaml && kubectl apply -f . #resources: # limits: # memory: 200Mi 這個pod沒有部署好,prometheus就無法收集到數據,導致grafana界面沒有數據,浪費了一天時間 kubectl get pods -n prom prometheus-server-64877844d4-gx4jr 1/1 Running 0 <invalid>
訪問NodePort,訪問prometheus
部署k8s-prometheus-adapter,需要自制證書
cd kube-state-metrics/ && kubectl apply -f . cd /etc/kubernetes/pki/ (umask 077; openssl genrsa -out serving.key 2048) openssl req -new -key serving.key -out serving.csr -subj "/CN=serving" openssl x509 -req -in serving.csr -CA ./ca.crt -CAkey ./ca.key -CAcreateserial -out serving.crt -days 3650 # custom-metrics-apiserver-deployment.yaml會用到secretName: cm-adapter-serving-certs kubectl create secret generic cm-adapter-serving-certs --from-file=serving.crt=./serving.crt --from-file=serving.key=./serving.key -n prom # 部署k8s-prometheus-adapter,由於版本問題,需要下載兩個文件,將兩個文件中的名稱空間改為prom cd k8s-prometheus-adapter/ mv custom-metrics-apiserver-deployment.yaml .. wget https://raw.githubusercontent.com/DirectXMan12/k8s-prometheus-adapter/master/deploy/manifests/custom-metrics-apiserver-deployment.yam wget https://raw.githubusercontent.com/DirectXMan12/k8s-prometheus-adapter/master/deploy/manifests/custom-metrics-config-map.yaml kubectl apply -f . kubectl api-versions # 必須出現這個api,並且開啟代理可以訪問到數據 custom.metrics.k8s.io/v1beta1 kubectl proxy --port=8080 curl http://localhost:8080/apis/custom.metrics.k8s.io/v1beta1/ # prometheus和grafana整合 wget https://raw.githubusercontent.com/kubernetes-retired/heapster/master/deploy/kube-config/influxdb/grafana.yaml 把namespace: kube-system改成prom,有兩處; 把env里面的下面兩個注釋掉: - name: INFLUXDB_HOST value: monitoring-influxdb 在最有一行加個type: NodePort ports: - port: 80 targetPort: 3000 selector: k8s-app: grafana type: NodePort kubectl apply -f grafana.yaml kubectl get svc -n prom monitoring-grafana NodePort 10.96.228.0 <none> 80:30336/TCP 13h
prom名稱空間內的所有pod
訪問:10.0.0.20:30336
兩個k8s模板:https://grafana.com/dashboards/6417 https://grafana.com/dashboards/315
一切順利的話,立馬就能看到監控數據
2.HPA(水平pod自動擴展)
當pod壓力大了,會根據負載自動擴展Pod個數以緩解壓力
kubectl api-versions |grep auto 創建一個帶有資源限制的pod kubectl run myapp --image=ikubernetes/myapp:v1 --replicas=1 \ --requests='cpu=50m,memory=256Mi' --limits='cpu=50m,memory=256Mi' \ --labels='app=myapp' --expose --port=80 # 讓myapp這個控制器支持自動擴展,--cpu-percent表示cpu超過這個值就開始擴展 kubectl autoscale deployment myapp --min=1 --max=5 --cpu-percent=60 kubectl get hpa # 對pod進行壓力測試 kubectl patch svc myapp -p '{"spec":{"type": "NodePort"}}' yum install httpd-tools # 隨着cpu壓力的上升,會看到自動擴展為4個或更多的pod ab -c 1000 -n 5000000 http://172.16.1.100:31990/index.html # hpa v1版本只能根據cpu利用率擴展pod,hpa v2可以根據自定義指標利用率水平擴展pod kubectl delete hpa myapp cat hpa-v2-demo.yaml apiVersion: autoscaling/v2beta1 kind: HorizontalPodAutoscaler metadata: name: myapp-hpa-v2 spec: scaleTargetRef: # 根據什么指標來做評估壓力 apiVersion: apps/v1 kind: Deployment name: myapp # 對哪個控制器做自動擴展 minReplicas: 1 maxReplicas: 10 metrics: # 依據哪些指標來進行評估 - type: Resource # 基於資源進行評估 resource: name: cpu targetAverageUtilization: 55 # cpu使用率超過55%,就自動水平擴展pod個數 - type: Resource resource: name: memory # v2版可以根據內存進行評估 targetAverageValue: 50Mi # 內存使用超過50M,就自動水平擴展pod個數 kubectl apply -f hpa-v2-demo.yaml # 進行壓測即可看到pod會自動擴展 # 自定義的資源指標,pod被開發好之后,得支持這些指標,否則就是白寫 # 下面這個例子中支持並發參數的鏡像地址:https://hub.docker.com/r/ikubernetes/metrics-app/ cat hpa-v2-custom.yaml apiVersion: autoscaling/v2beta1 kind: HorizontalPodAutoscaler metadata: name: myapp-hpa-v2 spec: scaleTargetRef: apiVersion: apps/v1 kind: Deployment name: myapp minReplicas: 1 maxReplicas: 10 metrics: - type: Pods # 利用pod中定義的指標進行擴縮 pods: metricName: http_requests # 自定義的資源指標 targetAverageValue: 800m # m表示個數,並發數800
參考博客:http://blog.itpub.net/28916011/viewspace-2216340/
prometheus監控mysql、k8s:https://www.cnblogs.com/sfnz/p/6566951.html