參考了以下鏈接, 並修正了其中的一些錯誤。
https://www.cnblogs.com/FlyingBread/archive/2009/02/15/660206.html
一個在線轉化工具
http://www.binaryconvert.com/convert_float.html
1 浮點數的表示
IEEE754用下面的格式來表示浮點數
| S | P | M |
其中S是符號位,P是階碼,M是尾數
單精度浮點數是32位(即4字節)的,雙精度浮點數是64位(即8字節)的。兩者的S,P,M所占的位數以及表示方法見下圖:
以單精度浮點數為例,可以得到其二進制的表示格式如下
| S(第31位) | P(30位到23位) | M(22位到0位) |
其中S是符號位,只有0和1,分別表示正負;P是階碼,通常使用移碼表示(移碼和補碼只有符號位相反,其余都一樣。對於正數而言,原碼,反碼和補碼都一樣;對於負數而言,補碼就是其絕對值的原碼全部取反,然后加1)
為了簡單起見,本文都只討論單精度浮點數,雙精度浮點數也是用一樣的方式存儲和表示的。
2 浮點數的表示約定
單精度浮點數和雙精度浮點數都是用IEEE754標准定義的,其中有一些特殊約定。
(1) 當P = 0, M = 0時,表示0。
(2) 當P = 255, M = 0時,表示無窮大,用符號位來確定是正無窮大還是負無窮大。
(3) 當P = 255, M != 0時,表示NaN(Not a Number,不是一個數)。
e為8(單精度)或者13(雙精度)
規約形式的浮點數
如果浮點數中指數部分的編碼值在
之間,且在科學表示法的表示方式下,小數 (fraction) 部分最高有效位(即整數字)是1,那么這個浮點數將被稱為規約形式的浮點數。“規約”是指用唯一確定的浮點形式去表示一個值。由於這種表示下的尾數有一位隱含的二進制有效數字,為了與二進制科學計數法的尾數(mantissa)相區別,IEEE754稱之為有效數(significant)。
舉例來說,雙精度 (64-bit) 的規約形式浮點數在指數偏移值的值域為
(11-bit) 到
,在小數部分則是
到
(52-bit)。
非規約形式的浮點數
如果浮點數的指數部分的編碼值是0,小數部分非零,那么這個浮點數將被稱為非規約形式的浮點數。一般是某個數字相當接近零時才會使用非規約型式來表示。 IEEE 754標准規定:非規約形式的浮點數的指數偏移值比規約形式的浮點數的指數偏移值小1。例如,最小的規約形式的單精度浮點數的指數部分編碼值為1,指數的實際值為-126;而非規約的單精度浮點數的指數域編碼值為0,對應的指數實際值也是-126而不是-127。實際上非規約形式的浮點數仍然是有效可以使用的,只是它們的絕對值已經小於所有的規約浮點數的絕對值;即所有的非規約浮點數比規約浮點數更接近0。規約浮點數的尾數大於等於1且小於2,而非規約浮點數的尾數小於1且大於0。
C++中,單精度和雙精度浮點數的一些特殊常量值如下。通常是在float.h里面定義的。

那么這些值是如何求出來的呢?
例如FLT_MAX, 根據上面的約定,我們可以知道階碼P的最大值是11111110(這個值是254,因為255用於特殊的約定,那么對於可以精確表示的數來說,254就是最大的階碼了)。尾數的最大值是11111111111111111111111。
那么這個最大值就是:0 11111110 11111111111111111111111。
也就是 2(254-127) * (1.11111111111111111111111)2 = 2127 * (1+1-2-23) = 3.40282346638529E+38
3 浮點數的精度問題
浮點數以有限的32bit長度來反映無限的實數集合,因此大多數情況下都是一個近似值。同時,對於浮點數的運算還同時伴有誤差擴散現象。特定精度下看似相等的兩個浮點數可能並不相等,因為它們的最小有效位數不同。
由於浮點數可能無法精確近似於十進制數,如果使用十進制數,則使用浮點數的數學或比較運算可能不會產生相同的結果。
如果涉及浮點數,值可能不往返。值的往返是指,某個運算將原始浮點數轉換為另一種格式,而反向運算又將轉換后的格式轉換回浮點數,且最終浮點數與原始浮點數相等。由於一個或多個最低有效位可能在轉換中丟失或更改,往返可能會失敗。
單精和雙精浮點數的有效數字分別是有存儲的23和52個位,加上最左手邊沒有存儲的第1個位,即是24和53個位。
![]()
![]()
由以上的計算,單精和雙精浮點數可以保證7位和15位十進制有效數字。
4 將浮點數表示為二進制
4.1 無小數的浮點數轉換成二進制表示
首先,我們用一個不帶小數的浮點數來說明如何將一個浮點數轉換成二進制表示。假設要轉換的數據是45678.0f。
在處理這種不帶小數的浮點數時,直接將整數部分轉化為二進制表示:
1011_0010_0110_1110.0
然后將小數點向左移,一直移到離最高位只有1位,也就是 1.0110010011011100,一共移動了15位,我們知道,左移位表示乘法,右移位表示除法。所以原數就等於這樣:1.011001001101110 * ( 215 )。為了滿足規格化的要求,高位的1可以省略。尾數的二進制就變成了:011001001101110。
最后在尾數的后面補0,一直到補夠23位,就是:011_0010_0110_1110_0000_0000。
再回來看指數,根據前面的定義,P-127=15,那么P = 142,表示成二進制就是:10001110。
45678.0f這個數是正的,所以符號位是0,那么我們按照前面講的格式把它拼起來,就是:0 10001110 01100100110111000000000。
這就是45678.0f這個數的二進制表示,如果我們要得到16進制的表示,非常簡單,我們只需要把這個二進制串4個一組,轉換成16進制數就可以了。但是要注意的是x86架構的CPU都是Little Endian的(也就是低位字節在前,高位字節在后),所以在實際內存中該數字是按上面二進制串的倒序存儲的。要知道CPU是不是little endian的也很容易。
BitConverter.IsLittleEndian;
4.2 含小數的浮點數表示為二進制
對於含小數的浮點數,會有精度的問題,下面舉例說明。假設要轉換的小數為123.456。
對於這種帶小數的就需要把整數部和小數部分開處理。對於整數部分的處理不再贅述,直接化成二進制為:01111011。小數部份的處理比較麻煩一些,我們知道,使用二進制表示只有0和1,那么對於小數就只能用下面的方式來表示:
a1*2-1+a2*2-2+a3*2-3+......+an*2-n
其中a1等數可以是0或者1,從理論上將,使用這種表示方法可以表示一個有限的小數。但是尾數只能有23位,那么就必然會帶來精度的問題。
在很多情況下,我們只能近似地表示小數。來看0.456這個十進制純小數,該如何表示成二進制呢?一般說來,我們可以通過乘以2的方法來表示。
首先,把這個數字乘以2,小於1,所以第一位為0,然后再乘以2,大於1,所以第二位為1,將這個數字減去1,再乘以2,這樣循環下去,直到這個數字等於0為止。
在很多情況下,我們得到的二進制數字都大於23位,多於23位的就要舍去。舍入原則是0舍1入。通過這樣的辦法,我們可以得到二進制表示:1111011.01110100101111001。
現在開始向左移小數點,一共移了6位,這時候尾數為:1.11101101110100101111001,階碼為6加上127得133,二進制表示為:10000101,那么總的二進制表示為:
0 10000101 11101101110100101111001
表示成十六進制是:42 F6 E9 79
由於CPU是Little Endian的,所以在內存中表示為:79 E9 F6 42。
4.3 將純小數表示成二進制
對於純小數轉化為二進制來說,必須先進行規格化。例如0.0456,我們需要把它規格化,變為1.xxxx * (2n )的形式,要求得純小數X對應的n可用下面的公式:
n = int( 1 + log 2X )
0.0456我們可以表示為1.4592乘以以2為底的-5次方的冪,即1.4592 * ( 2-5 )。轉化為這樣形式后,再按照上面處理小數的方法處理,得到二進制表示
1. 01110101100011100010001
去掉第一個1,得到尾數
01110101100011100010001
階碼為:-5 + 127 = 122,二進制表示為
0 01111010 01110101100011100010001
最后轉換成十六進制
11 C7 3A 3D
下面是用c++寫的把string 串表示的ieee754格式單精度數轉化為float類型數,以及把float類型單精度浮點數轉化成ieee754表示的二進制串的函數。
// floatarith1.cpp : 此文件包含 "main" 函數。程序執行將在此處開始並結束。 //https://www.cnblogs.com/mikewolf2002/ #include "pch.h" #include <iostream> #include <cstdio> #include <string> #include <cmath> #include <vector> #include <algorithm> using namespace std; bool floatiszero(float d) { if (d >= -FLT_EPSILON && d <= FLT_EPSILON) return true; else return false; } bool doubleiszero(double d) { if (d >= -DBL_EPSILON && d <= DBL_EPSILON) return true; else return false; } //二進制串轉化成整數,轉化階碼 int pbstrtoint(string str, int n) { int i; int sum = 0; int bitnum = 1; for (i = 0; i < n; i++) { if (str[n - 1 - i] == '0') sum += 0 * bitnum; else if (str[n - 1 - i] == '1') sum += 1 * bitnum; bitnum = bitnum << 1; } return sum-127; } //二進制尾數轉化成實數 float mbstrtofloat(string str, int n) { int i; double sum = 1.0; int bitnum = 2; float fbitnum; for (i = 0; i < n; i++) { fbitnum = 1.0 / bitnum; if (str[i] == '0') sum += 0 * fbitnum; else if (str[i] == '1') sum += 1 * fbitnum; bitnum = bitnum << 1; } return sum; } //ieee754表示的二進制串轉化成浮點數 float bstrtofloat(string str, int n) { double sum=0; float sign = 1.0; float m; int p; if (n == 32) {//單精度浮點數 if (str[0] == '0') sign = 1.0; else if (str[0] == '1') sign = -1.0; p = pbstrtoint(str.substr(1, 8), 8); m = mbstrtofloat(str.substr(9,23), 23); sum = sign * pow(2.0, p*1.0) *m; } else if (n == 64) {//雙精度浮點數 } return sum; } //整數to二進制str string inttobstr(int n) { string str = ""; int m = 0; while (n > 0) { m = n % 2; if (m == 1) str.append("1"); else str.append("0"); n = n >> 1; } reverse(str.begin(), str.end()); return str; } // 整數to二進制str,only 8 bits binary,高位補0 string inttobstr8(int n) { string str = ""; int m = 0; int t = 0; if (n > 255) return ""; while (n > 0) { m = n % 2; if (m == 1) str.append("1"); else str.append("0"); n = n >> 1; t++; } if (t < 8) str.append(8 - t, '0'); reverse(str.begin(), str.end()); return str; } //尾數to二進制字符串 string mfloattostr(float f) { string str=""; int m = 0; do { f = f * 2.0; if (f >= 1.0) { str.append("1"); f = f - 1.0; } else str.append("0"); m++; } while ((!floatiszero(f)) | (m<23)); return str; } //a為整數部分,b為小數部分 string floattobstr(float f) { string str = "00000000000000000000000000000000"; string str1 = ""; string str2 = ""; string str3 = ""; string str4 = ""; int i; // int j; if (f < 0) str[0] = '1'; else str[0] = '0'; f = abs(f); //取絕對值 int a; float b; int pcode = 0;//移碼 a = floor(f);//向下取整,整數部分 b = f - a; //小數部分 str1 = inttobstr(a); str2 = mfloattostr(b); if (str1.length() > 0) {//整數部分小數部分都有 pcode = 127 + str1.length() - 1;//such as 110111.110, 此時pcode=127+5,小數點位左移 str3 = str1 + str2; } else {//只有小數部分,階碼為0或負值,找str2最左邊的第一個1. for (i = 0; i < str2.length(); i++) { if (str2[i] == '1') break; } i = i + 1; //skip first 1 pcode = 127 - i; str3 = str2.substr(i, str2.length() - i); } str4 = inttobstr8(pcode); for (i = 0; i < 8; i++) str[i + 1] = str4[i]; for (i = 0; i < (str3.length()) && i < 23; i++) str[9 + i] = str3[i]; // for (j = i; j < 23; j++) // str[9 + j] = '0'; //fill 0 in the end return str; } int main() { string str1; //str1 = "01000010111101101110100101111001"; str1 = "00111101001110101100011100010001"; //01000001000100000000000000000000 //01000111001100100110111000000000 //0 10000101 1110110111010010111100 //0 01111010 11101011000111000100010 int n; float f; n = pbstrtoint("10001110", 8); printf("n is %d\n", n); f = mbstrtofloat("01100100110111000000000", 23); printf("n is %d,f is %23.22f\n", n,f); f = bstrtofloat(str1, 32); printf("%s is %23.22f\n", str1.c_str(), f); str1 = inttobstr(19); printf("19 is %s\n", str1.c_str()); str1 = floattobstr(0.0456); printf("0.0456 is %s\n", str1.c_str()); //簡單方法在在c++中顯示浮點數的ieee754表示, num的值即為9.0的ieee754 表示 int num = 9; /* num是整型變量,設為9 */ float* pFloat = (float*)# /* pFloat表示num的內存地址,但是設為浮點數 */ printf("num的值為:%d\n", num); /* 顯示num的整型值 */ printf("*pFloat的值為:%f\n", *pFloat); /* 顯示num的浮點值 */ *pFloat = 9.0; /* 將num的值改為浮點數 */ printf("num的值為:%d\n", num); /* 顯示num的整型值 */ printf("*pFloat的值為:%f\n", *pFloat); /* 顯示num的浮點值 */ return 0; }
5 浮點數的數學運算
5.1 浮點數的加減法
設兩個浮點數 X=Mx*2Ex ,Y=My*2 Ey
實現X±Y要用如下5步完成:
(1)對階操作:小階向大階看齊
(2)進行尾數加減運算
(3)規格化處理:尾數進行運算的結果必須變成規格化的浮點數,對於雙符號位(就是使用00表示正數,11表示負數,01表示上溢出,10表示下溢出)的補碼尾數來說,就必須是
001×××…×× 或110×××…××的形式
若不符合上述形式要進行左規或右規處理。
(4)舍入操作:在執行對階或右規操作時常用“0”舍“1”入法將右移出去的尾數數值進行舍入,以確保精度。
(5)判結果的正確性:即檢查階碼是否溢出
若階碼下溢(移碼表示是00…0),要置結果為機器0;
若階碼上溢(超過了階碼表示的最大值)置溢出標志。
現在用一個具體的例子來說明上面的5個步驟
例題:假定X=0 .0110011*211,Y=0.1101101*2-10(此處的數均為二進制), 計算X+Y;
首先,我們要把這兩個數變成2進制表示,對於浮點數來說,階碼通常用移碼表示,而尾數通常用補碼表示。
要注意的是-10的移碼是00110
[X]浮: 0 1 010 1100110
[Y]浮: 0 0 110 1101101
符號位 階碼 尾數
(1)求階差:│ΔE│=|1010-0110|=0100
(2)對階:Y的階碼小,Y的尾數右移4位
[Y]浮變為 0 1 010 0000110 1101暫時保存
(3)尾數相加,采用雙符號位的補碼運算
00 1100110
+00 0000110
00 1101100
(4)規格化:滿足規格化要求
(5)舍入處理,采用0舍1入法處理
故最終運算結果的浮點數格式為: 0 1 010 1101101
即X+Y=+0. 1101101*210
5.2 浮點數的乘除法
(1)階碼運算:階碼求和(乘法)或階碼求差(除法)
即 [Ex+Ey]移= [Ex]移+ [Ey]補
[Ex-Ey]移= [Ex]移+ [-Ey]補
(2)浮點數的尾數處理:浮點數中尾數乘除法運算結果要進行舍入處理
例題:X=0 .0110011*211,Y=0.1101101*2-10 求X*Y
解:[X]浮: 0 1 010 1100110
[Y]浮: 0 0 110 1101101
(1)階碼相加
[Ex+Ey]移=[Ex]移+[Ey]補=1 010+1 110=1 000
1 000為移碼表示的0
(2)原碼尾數相乘的結果為:
0 10101101101110
(3)規格化處理:已滿足規格化要求,不需左規,尾數不變,階碼不變。
(4)舍入處理:按舍入規則,加1進行修正
所以 X※Y= 0.1010111*20



