搞了幾天終於把這個給搞得差不多了,遇到的錯誤這里也記錄一下:
一、配置【配置什么的300和512其實差不多,這里只舉一個例子來分析一下】
之前的文件修改什么的和300x300的一樣:https://www.cnblogs.com/GrPhoenix/p/10018072.html
從自己訓練的ssd_300_vgg模型開始訓練ssd_512_vgg的模型
因ssd_300_vgg中沒有block12,又因為block7,block8,block9,block10,block11,中的參數張量兩個網絡模型中不匹配,因此ssd_512_vgg中這幾個模塊的參數不從ssd_300_vgg模型中繼承,因此使用checkpoint_exclude_scopes命令指出。
因為所有的參數均需要訓練,因此不使用命令--trainable_scopes
另外由300轉512后還需修改:
1. 首先修改ssd_vgg_512.py的訓練類別
2.修改train_ssd_network.py的model_name
修改為ssd_512_vgg
3. 修改nets/np_methods.py
修改:將300改為512, 將類別改為自己數據的類別(+背景)
4. 修改preprocessing/ssd_vgg_preprocessing.py
修改:將300改為512
5. 修改ssd_notbook.ipynb
a 將文件中數字“300”改為“512”
其他修改可以參考:http://blog.csdn.net/liuyan20062010/article/details/78905517
二、我遇到的錯誤:
InvalidArgumentError (see above for traceback): Restoring from checkpoint failed. This is most likely due to a mismatch between the current graph and the graph from the checkpoint. Please ensure that you have not altered the graph expected based on the checkpoint. Original error: Assign requires shapes of both tensors to match. lhs shape= [84] rhs shape= [8] [[{{node save/Assign_20}} = Assign[T=DT_FLOAT, _class=["loc:@ssd_512_vgg/block12_box/conv_cls/biases"], use_locking=true, validate_shape=true, _device="/job:localhost/replica:0/task:0/device:GPU:0"](ssd_512_vgg/block12_box/conv_cls/biases, save/RestoreV2/_41)]] [[{{node save/RestoreV2/_104}} = _Send[T=DT_FLOAT, client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device_incarnation=1, tensor_name="edge_110_save/RestoreV2", _device="/job:localhost/replica:0/task:0/device:CPU:0"](save/RestoreV2:52)]]
這類的問題本質上來說還是自己的配置不對,這個問題我查了很久,最后發現實在是太simpleT-T。
我的問題的話:在從300轉到512的時候忘記改ssd_vgg_512.py的類別導致test的時候文件配置和訓練的tensor shape不匹配TT...