[ubuntu 18.04 + RTX 2070] Anaconda3 - 5.2.0 + CUDA10.0 + cuDNN 7.4.1 + bazel 0.17 + tensorRT 5 + Tensorflow(GPU)


RTX 2070 同樣可以在 ubuntu 16.04 + cuda 9.0中使用。Ubuntu18.04可能只支持cuda10.0,在跑開源代碼時可能會報一些奇怪的錯誤,所以建議大家配置 ubuntu16.04 + cuda 9.0。下文還是以ubuntu18.04 + cuda 10.0為例。ubuntu16.04 + cuda 9.0的配置方法大同小異。

如果之前安裝的是cuda9.0可以直接用pip安裝Tensorflow-GPU,只需要安裝Anaconda,virtualenv, CUDA, cuDNN, 之后pip安裝tensorflow-gpu;

如果安裝的其他版本的CUDA,需要用源碼安裝,需要將下面的1,2,3,4,(5可選),之后用源碼安裝tensorflow-gpu, 並在configure時,根據自己的安裝1,2,3,4,5的安裝版本等情況自行調整配置選項。

雖然CUDA官網中沒有RTX20系列GPU所對應的版本,但是CUDA 10.0 支持Ubuntu18.04 + GPU GEFORCE RTX 2070。為了方便之后學習研究,需要配置:

  1. Anaconda3 5.2.0
  2. CUDA 10.0
  3. cuDNN 7.4.1
  4. Bazel 0.17
  5. TensorRT 5
  6. Tensorflow-gpu

(以下為本人配置方法,由於配置過程中有過錯誤並重試等情況,以下內容如有錯誤還請指正~)

(上面列出的各版本都是支持ubuntu18.04 和 RTX 2070的,大家也可以直接參照以上列表,自行安裝~)

(安裝NVIDIA驅動的方法參考:https://blog.csdn.net/ghw15221836342/article/details/79571559 方法一中,把390替換為410即為RTX 2070 對應版本。)

----------------------------------------------------------------------------------

Ubuntu 18 安裝Anaconda3 - 5.2.0

因為tensorflow支持python3.4, 3.5, 3.6,可能還未支持python3.7(python目前最高版本3.7.1 與anaconda3 對應最高python版本3.7.0),為了方便起見,選擇安裝Anaconda3 - 5.2.0,其對應的python版本為3.6.4. 安裝了Anaconda之后,不需要再單獨安裝python及其各種庫了。

anaconda各版本的archive:

https://repo.anaconda.com/archive/

選擇下載 Anaconda3-5.2.0-Linux-x86_64.sh

之后到下載目錄,

bash Anaconda3-5.2.0-Linux-x86_64.sh

可以通過查看

python --version

顯示

Python 3.6.5 :: Anaconda, Inc.

表示安裝成功。

查看pip版本:

$ pip --version
pip 10.0.1 from /home/lsy/anaconda3/lib/python3.6/site-packages/pip (python 3.6)

--------------(若完成以上,則無需進行下面的安裝python的操作了)--------------------------------------------

Ubuntu 18 安裝 python 3.6

sudo add-apt-repository ppa:jonathonf/python-3.6

Ubuntu 18 安裝 python3.7.1

安裝過程參考:

https://blog.csdn.net/jaket5219999/article/details/80894517

wget https://www.python.org/ftp/python/3.7.1/Python-3.7.1.tar.xz && \
    tar -xvf Python-3.7.1.tar.xz && \
    cd Python-3.7.1 && \
    ./configure && make && sudo make altinstall

從官網下載https://www.python.org/downloads/release/python-370/

解壓並打開指定目錄

./configure && make && sudo make altinstall

報錯 zipimport.ZipImportError: can‘t decompress data; zlib not available

解決方法:

sudo apt-get install -y make build-essential libssl-dev zlib1g-dev libbz2-dev \
libreadline-dev libsqlite3-dev wget curl llvm libncurses5-dev libncursesw5-dev \
xz-utils tk-dev

 

python2,python3版本切換

參考:https://stackoverflow.com/questions/43743509/how-to-make-python3-command-run-python-3-6-instead-of-3-5

# 實現 python 鏈接 python3.6
rm /usr/bin/python
ln -s /usr/bin/python3.6 /usr/bin/python

# 實現 python2 鏈接 Python2.7
rm /usr/bin/python2
ln -s /usr/bin/python2.7 /usr/bin/python2

# 創建 alias
alias python='/usr/bin/python3.6'
~/.bash_aliases

pip安裝

sudo apt-get install python3-pip

這里要用python3,否則匹配的是默認的python2。

--------------------------------------------------------------------------------------------------------------------------------

CUDA 10.0

參考:

https://medium.com/@vitali.usau/install-cuda-10-0-cudnn-7-3-and-build-tensorflow-gpu-from-source-on-ubuntu-18-04-3daf720b83fe

1. 下載CUDA Toolkit : Linux / x86_64 / Ubuntu / 18.04 /deb (local)

https://developer.nvidia.com/cuda-downloads

2. 安裝

sudo dpkg -i cuda-repo-ubuntu1804–100-local-10.0.130410.48_1.0–1_amd64.deb
sudo apt-key add /var/cuda-repo-100-local-10.0.130410.48/7fa2af80.pub
sudo apt-get update
sudo apt-get install cuda

3. 添加環境變量

nano ~/.bashrc

末行添加並保存退出。

export PATH=/usr/local/cuda-10.0/bin${PATH:+:${PATH}} 

4. 檢查驅動版本和CUDA toolkit

cat /proc/driver/nvidia/version
nvcc -V

5. (Optional) Build CUDA samples and run it.

cd /usr/local/cuda-10.0/samples
sudo make

這需要等一段時間。完成后,可以進入資源中,執行命令查看結果。

cd /usr/local/cuda-10.0/samples/bin/x86_64/linux/release
./deviceQuery
./bandwidthTest

------------------------------------------------------------------

cuDNN v7.4.1 for CUDA 10.0

1. 下載cuDNN Library for Linux

https://developer.nvidia.com/rdp/cudnn-download

(下載前需要在NVIDIA注冊賬號:https://developer.nvidia.com/

2. 解壓下載好的文件,解壓后cuDNN的文件夾名稱為cuda

3. 將cuDNN內容復制到CUDA安裝文件中,即將cuDNN解壓后的cuda文件中內容復制到/usr/local的CUDA中。

$ sudo cp cuda/include/cudnn.h    /usr/local/cuda/include
$ sudo cp cuda/lib64/libcudnn*    /usr/local/cuda/lib64
$ sudo chmod a+r /usr/local/cuda/include/cudnn.h   /usr/local/cuda/lib64/libcudnn*

(該方法參考:https://blog.csdn.net/u010801439/article/details/80483036

------------------------------------------------------------------------

NCCL v2.3.7

只有需要用源碼安裝tensorflow時才需要裝這個哦~用pip的可以跳過

安裝方法參考:https://blog.csdn.net/zuyuhuo6777/article/details/81450258

1. 下載

https://developer.nvidia.com/nccl/nccl-download

選擇Local installers (x86)中的Local installer for Ubuntu 18.04
2. 安裝
進入下載目錄,安裝本地NCCL存儲庫,更新APY數據庫,安裝libnccl2與APT打包。此外,若需要使用NCCL編譯應用程序,則可以安裝libnccl-dev的包裹。

$ sudo dpkg -i nccl-repo-ubuntu1804-2.3.7-ga-cuda10.0_1-1_amd64.deb 
$ sudo apt update
$ sudo apt install libnccl2 libnccl-dev

------------------------------------------------------------------------

方便起見,請直接下載Bazel 0.17

(早先安裝了0.19,--config == cuda 並不支持0.17以上版本,不清楚使用0.19對后續步驟有無影響,所以,卸載了0.19,重新安裝了0.17。卸載方法:whereis bazel,找到bazel目錄,直接rm -rf <path>即可。)

Bazel 0.19.2

只有需要用源碼安裝tensorflow時才需要裝這個哦~用pip的可以跳過

官網提供了多種安裝方法,

https://docs.bazel.build/versions/master/install-ubuntu.html#install-with-installer-ubuntu

以下使用了Installing using binary installer的方法。

1. 下載需要的包

$ sudo apt-get install pkg-config zip g++ zlib1g-dev unzip python

2. 下載Bazel

https://github.com/bazelbuild/bazel/releases

選擇安裝了bazel-0.19.2-installer-linux-x86_64.sh

3. Run the installer

$ chmod +x bazel-<version>-installer-linux-x86_64.sh
$ ./bazel-<version>-installer-linux-x86_64.sh --user

4. 設置環境

$ nano ~/.bashrc

末行添加並保存退出

export PATH="$PATH:$HOME/bin"

執行以生效:

$ source ~/.bashrc

5. 檢查是否安裝成功

$ bazel version

 --------------------------------------------

TensotRT 5.0.2.6

只有需要用源碼安裝tensorflow時才需要裝這個哦~用pip的可以跳過。用源碼安裝,該項也可以不裝,看自己需求。如果安裝,在源碼編譯,configure時記得選擇和自己安裝匹配的選項哦~

for Ubuntu 1804 and CUDA 10.0

1. 下載

https://developer.nvidia.com/nvidia-tensorrt-5x-download

選擇了Debian and RPM Install Package:

TensorRT 5.0.2.6 GA for Ubuntu 1804 and CUDA 10.0 DEB local repo packages

2. 安裝,參考官方文檔:

https://docs.nvidia.com/deeplearning/sdk/tensorrt-install-guide/index.html#downloading

$ sudo dpkg -i nv-tensorrt-repo-ubuntu1804-cuda10.0-trt5.0.2.6-ga-20181009_1-1_amd64.deb 
$ sudo apt-key add /var/nv-tensorrt-repo-cuda10.0-trt5.0.2.6-ga-20181009/7fa2af80.pub 
$ sudo apt-get update
$ sudo apt-get install tensorrt

 之前Anaconda3 中python是3.6版本,下面直接寫python就好,不用改為python3.

$ sudo apt-get install python-libnvinfer-dev

安裝后顯示:

Setting up python-libnvinfer-dev (5.0.2-1+cuda10.0) ...

若計划通過tensorflow使用tensorRT

$ sudo apt-get install uff-converter-tf

安裝后顯示:

Setting up graphsurgeon-tf (5.0.2-1+cuda10.0) ...
Setting up uff-converter-tf (5.0.2-1+cuda10.0) ...

3. 檢查我們的安裝結果:

$ dpkg -l | grep TensorRT
ii  graphsurgeon-tf                                             5.0.2-1+cuda10.0                    amd64        GraphSurgeon for TensorRT package
ii  libnvinfer-dev                                              5.0.2-1+cuda10.0                    amd64        TensorRT development libraries and headers
ii  libnvinfer-samples                                          5.0.2-1+cuda10.0                    all          TensorRT samples and documentation
ii  libnvinfer5                                                 5.0.2-1+cuda10.0                    amd64        TensorRT runtime libraries
ii  python-libnvinfer                                           5.0.2-1+cuda10.0                    amd64        Python bindings for TensorRT
ii  python-libnvinfer-dev                                       5.0.2-1+cuda10.0                    amd64        Python development package for TensorRT
ii  tensorrt                                                    5.0.2.6-1+cuda10.0                  amd64        Meta package of TensorRT
ii  uff-converter-tf                                            5.0.2-1+cuda10.0                    amd64        UFF converter for TensorRT package

--------------------------------------------------------

Tensorflow

推薦兩種安裝方式:1.在docker中安裝;2. 在virtualenv中安裝。一般2用的多一些。

(1)docker中:

1. Docker的安裝:

https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-on-ubuntu-18-04

2. Install nvidia-docker:

https://github.com/NVIDIA/nvidia-docker

3. Downloads TensorFlow release images to your machine:

$ docker pull tensorflow/tensorflow:latest-devel-gpu

(2)virtualenv中:

sudo apt update
sudo apt install python-dev python-pip
sudo pip install -U virtualenv # system-wide install
virtualenv --system-site-packages -p python3 ./venv
source ./venv/bin/activate
(venv) $ pip install --upgrade pip
(venv) $ pip list

在(venv)中繼續安裝tensorflow.

(1) Installed by pip: 如果之前安裝的是cuda9.0可以直接用pip安裝,否則,需要用源碼安裝,見(2)

pip install tensorflow-gpu==1.12

ImportError: libcublas.so.9.0: cannot open shared object file: No such file or directory

Solution: add the following to .bashrc

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib64/

(2) Else: Build from source

這里注意./configure時候,默認cuda版本是9.0,我們改為 10.0.

安裝完畢后可以退出venv:

(venv) $ deactivate # don't exit until you're done using TensorFlow

------------------------------------------------------------------------------

測試tensorflow-gpu在docker中是否能順利運行:

$ sudo docker run --runtime=nvidia -it --rm tensorflow/tensorflow:latest-gpu \
>    python -c "import tensorflow as tf; tf.enable_eager_execution(); print(tf.reduce_sum(tf.random_normal([1000, 1000])))"
[sudo] password for lsy: 
Unable to find image 'tensorflow/tensorflow:latest-gpu' locally
latest-gpu: Pulling from tensorflow/tensorflow
18d680d61657: Already exists 
0addb6fece63: Already exists 
78e58219b215: Already exists 
eb6959a66df2: Already exists 
e3eb30fe4844: Already exists 
852c9b7a4425: Already exists 
0a298bf31111: Already exists 
4b34ad03a386: Pull complete 
ea4e8d636cf7: Pull complete 
e641906af026: Pull complete 
af41a77e326c: Pull complete 
56234dc44f16: Pull complete 
33999852f515: Pull complete 
11679b84da5e: Pull complete 
231eb8ba046b: Pull complete 
7d894676fbc1: Pull complete 
Digest: sha256:847690afb29977920dbdbcf64a8669a2aaa0a202844fe80ea5cb524ede9f0a0b
Status: Downloaded newer image for tensorflow/tensorflow:latest-gpu
2018-11-26 05:48:05.315151: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
2018-11-26 05:48:05.490068: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:964] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2018-11-26 05:48:05.490510: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1432] Found device 0 with properties: 
name: GeForce RTX 2070 major: 7 minor: 5 memoryClockRate(GHz): 1.725
pciBusID: 0000:01:00.0
totalMemory: 7.76GiB freeMemory: 7.09GiB
2018-11-26 05:48:05.490528: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1511] Adding visible gpu devices: 0
2018-11-26 05:48:05.727215: I tensorflow/core/common_runtime/gpu/gpu_device.cc:982] Device interconnect StreamExecutor with strength 1 edge matrix:
2018-11-26 05:48:05.727251: I tensorflow/core/common_runtime/gpu/gpu_device.cc:988]      0 
2018-11-26 05:48:05.727257: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1001] 0:   N 
2018-11-26 05:48:05.727423: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 6817 MB memory) -> physical GPU (device: 0, name: GeForce RTX 2070, pci bus id: 0000:01:00.0, compute capability: 7.5)
tf.Tensor(-568.0144, shape=(), dtype=float32)

 ---------------------------------------------------------

=======================================

     感謝您的支持!  [支付寶]  您願意送我一個小禮物嗎?O(∩_∩)O


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM