Python: 大型數組運算


需要在大數據集(比如數組或網格) 上面執行計算,涉及到數組的重量級運算操作,可以使用NumPy 庫。

下面是一個簡單的小例子,展示標准列表對象和NumPy 數組對象之間的差別

>>> x = [1, 2, 3, 4]
>>> y = [5, 6, 7, 8]
>>> x * 2
[1, 2, 3, 4, 1, 2, 3, 4]
>>> x + 10
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: can only concatenate list (not "int") to list
>>> x + y
[1, 2, 3, 4, 5, 6, 7, 8]
>>> # Numpy arrays
>>> import numpy as np
>>> ax = np.array([1, 2, 3, 4])
>>> ay = np.array([5, 6, 7, 8])
>>> ax * 2
array([2, 4, 6, 8])
>>> ax + 10
array([11, 12, 13, 14])
>>> ax + ay
array([ 6, 8, 10, 12])
>>> ax * ay
array([ 5, 12, 21, 32])

 正如所見,兩種方案中數組的基本數學運算結果並不相同。特別的, NumPy 中的標量運算(比如ax * 2 或ax + 10 ) 會作用在每一個元素上。另外,當兩個操作數都是數組的時候執行元素對等位置計算,並最終生成一個新的數組。

對整個數組中所有元素同時執行數學運算可以使得作用在整個數組上的函數運算簡單而又快速。比如,如果你想計算多項式的值,可以這樣做:

>>> def f(x):
... return 3*x**2 - 2*x + 7
...
>>> f(ax)
array([ 8, 15, 28, 47])

 NumPy 還為數組操作提供了大量的通用函數,這些函數可以作為math 模塊中類似函數的替代。

>>> np.sqrt(ax)
array([ 1. , 1.41421356, 1.73205081, 2. ])
>>> np.cos(ax)
array([ 0.54030231, -0.41614684, -0.9899925 , -0.65364362])

 使用這些通用函數要比循環數組並使用math 模塊中的函數執行計算要快的多。因此,只要有可能的話盡量選擇NumPy 的數組方案。

底層實現中, NumPy 數組使用了C 或者Fortran 語言的機制分配內存。也就是說,它們是一個非常大的連續的並由同類型數據組成的內存區域。所以,可以構造一個比普通Python 列表大的多的數組。比如,如果你想構造一個10,000*10,000 的浮點數二維網格,很輕松:

>>> grid = np.zeros(shape=(10000,10000), dtype=float)
>>> grid
array([[ 0., 0., 0., ..., 0., 0., 0.],
[ 0., 0., 0., ..., 0., 0., 0.],
[ 0., 0., 0., ..., 0., 0., 0.],
...,
[ 0., 0., 0., ..., 0., 0., 0.],
[ 0., 0., 0., ..., 0., 0., 0.],
[ 0., 0., 0., ..., 0., 0., 0.]])

 所有的普通操作還是會同時作用在所有元素上:

>>> grid += 10
>>> grid
array([[ 10., 10., 10., ..., 10., 10., 10.],
[ 10., 10., 10., ..., 10., 10., 10.],
[ 10., 10., 10., ..., 10., 10., 10.],
...,
[ 10., 10., 10., ..., 10., 10., 10.],
[ 10., 10., 10., ..., 10., 10., 10.],
[ 10., 10., 10., ..., 10., 10., 10.]])
>>> np.sin(grid)
array([[-0.54402111, -0.54402111, -0.54402111, ..., -0.54402111,
-0.54402111, -0.54402111],
[-0.54402111, -0.54402111, -0.54402111, ..., -0.54402111,
-0.54402111, -0.54402111],
[-0.54402111, -0.54402111, -0.54402111, ..., -0.54402111,
-0.54402111, -0.54402111],
...,
[-0.54402111, -0.54402111, -0.54402111, ..., -0.54402111,
-0.54402111, -0.54402111],
[-0.54402111, -0.54402111, -0.54402111, ..., -0.54402111,
-0.54402111, -0.54402111],
[-0.54402111, -0.54402111, -0.54402111, ..., -0.54402111,
-0.54402111, -0.54402111]])
>>>

 關於NumPy 有一點需要特別的主意,那就是它擴展Python 列表的索引功能- 特別是對於多維數組。為了說明清楚,先構造一個簡單的二維數組並試着做些試驗:

>>> a = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
>>> a
array([[ 1, 2, 3, 4],
[ 5, 6, 7, 8],
[ 9, 10, 11, 12]])
>>> # Select row 1
>>> a[1]
array([5, 6, 7, 8])
>>> # Select column 1
>>> a[:,1]
array([ 2, 6, 10])
>>> # Select a subregion and change it
>>> a[1:3, 1:3]
array([[ 6, 7],
[10, 11]])
>>> a[1:3, 1:3] += 10
>>> a
array([[ 1, 2, 3, 4],
[ 5, 16, 17, 8],
[ 9, 20, 21, 12]])

>>> a + [100, 101, 102, 103]
array([[101, 103, 105, 107],
[105, 117, 119, 111],
[109, 121, 123, 115]])
>>> a
array([[ 1, 2, 3, 4],
[ 5, 16, 17, 8],
[ 9, 20, 21, 12]])
>>> # Conditional assignment on an array
>>> np.where(a < 10, a, 10)
array([[ 1, 2, 3, 4],
[ 5, 10, 10, 8],
[ 9, 10, 10, 10]])

 

NumPy 是Python 領域中很多科學與工程庫的基礎,同時也是被廣泛使用的最大最復雜的模塊。即便如此,在剛開始的時候通過一些簡單的例子和玩具程序也能幫我們完成一些有趣的事情。
通常我們導入NumPy 模塊的時候會使用語句import numpy as np 。這樣的話你就不用再你的程序里面一遍遍的敲入numpy ,只需要輸入np 就行了,節省了不少時間。
如果想獲取更多的信息, 你當然得去NumPy 官網逛逛了, 網址是: http://www.numpy.org

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM