先說實驗成功的代碼:
git clone https://github.com/tkwoo/anogan-keras.git
mkdir weights
python main.py --mode train
即可看到效果了!
核心代碼:main.py
from __future__ import print_function import matplotlib matplotlib.use('Qt5Agg') import os import cv2 import numpy as np import matplotlib.pyplot as plt from keras.datasets import mnist import argparse import anogan os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' parser = argparse.ArgumentParser() parser.add_argument('--img_idx', type=int, default=14) parser.add_argument('--label_idx', type=int, default=7) parser.add_argument('--mode', type=str, default='test', help='train, test') args = parser.parse_args() ### 0. prepare data (X_train, y_train), (X_test, y_test) = mnist.load_data() X_train = (X_train.astype(np.float32) - 127.5) / 127.5 X_test = (X_test.astype(np.float32) - 127.5) / 127.5 X_train = X_train[:,:,:,None] X_test = X_test[:,:,:,None] X_test_original = X_test.copy() X_train = X_train[y_train==1] X_test = X_test[y_test==1] print ('train shape:', X_train.shape) ### 1. train generator & discriminator if args.mode == 'train': Model_d, Model_g = anogan.train(64, X_train) ### 2. test generator generated_img = anogan.generate(25) img = anogan.combine_images(generated_img) img = (img*127.5)+127.5 img = img.astype(np.uint8) img = cv2.resize(img, None, fx=4, fy=4, interpolation=cv2.INTER_NEAREST) ### opencv view # cv2.namedWindow('generated', 0) # cv2.resizeWindow('generated', 256, 256) # cv2.imshow('generated', img) # cv2.imwrite('result_latent_10/generator.png', img) # cv2.waitKey() ### plt view # plt.figure(num=0, figsize=(4, 4)) # plt.title('trained generator') # plt.imshow(img, cmap=plt.cm.gray) # plt.show() # exit() ### 3. other class anomaly detection def anomaly_detection(test_img, g=None, d=None): model = anogan.anomaly_detector(g=g, d=d) ano_score, similar_img = anogan.compute_anomaly_score(model, test_img.reshape(1, 28, 28, 1), iterations=500, d=d) # anomaly area, 255 normalization np_residual = test_img.reshape(28,28,1) - similar_img.reshape(28,28,1) np_residual = (np_residual + 2)/4 np_residual = (255*np_residual).astype(np.uint8) original_x = (test_img.reshape(28,28,1)*127.5+127.5).astype(np.uint8) similar_x = (similar_img.reshape(28,28,1)*127.5+127.5).astype(np.uint8) original_x_color = cv2.cvtColor(original_x, cv2.COLOR_GRAY2BGR) residual_color = cv2.applyColorMap(np_residual, cv2.COLORMAP_JET) show = cv2.addWeighted(original_x_color, 0.3, residual_color, 0.7, 0.) return ano_score, original_x, similar_x, show ### compute anomaly score - sample from test set # test_img = X_test_original[y_test==1][30] ### compute anomaly score - sample from strange image # test_img = X_test_original[y_test==0][30] ### compute anomaly score - sample from strange image img_idx = args.img_idx label_idx = args.label_idx test_img = X_test_original[y_test==label_idx][img_idx] # test_img = np.random.uniform(-1,1, (28,28,1)) start = cv2.getTickCount() score, qurey, pred, diff = anomaly_detection(test_img) time = (cv2.getTickCount() - start) / cv2.getTickFrequency() * 1000 print ('%d label, %d : done'%(label_idx, img_idx), '%.2f'%score, '%.2fms'%time) # cv2.imwrite('./qurey.png', qurey) # cv2.imwrite('./pred.png', pred) # cv2.imwrite('./diff.png', diff) ## matplot view plt.figure(1, figsize=(3, 3)) plt.title('query image') plt.imshow(qurey.reshape(28,28), cmap=plt.cm.gray) print("anomaly score : ", score) plt.figure(2, figsize=(3, 3)) plt.title('generated similar image') plt.imshow(pred.reshape(28,28), cmap=plt.cm.gray) plt.figure(3, figsize=(3, 3)) plt.title('anomaly detection') plt.imshow(cv2.cvtColor(diff,cv2.COLOR_BGR2RGB)) plt.show() ### 4. tsne feature view ### t-SNE embedding ### generating anomaly image for test (radom noise image) from sklearn.manifold import TSNE random_image = np.random.uniform(0, 1, (100, 28, 28, 1)) print("random noise image") plt.figure(4, figsize=(2, 2)) plt.title('random noise image') plt.imshow(random_image[0].reshape(28,28), cmap=plt.cm.gray) # intermidieate output of discriminator model = anogan.feature_extractor() feature_map_of_random = model.predict(random_image, verbose=1) feature_map_of_minist = model.predict(X_test_original[y_test != 1][:300], verbose=1) feature_map_of_minist_1 = model.predict(X_test[:100], verbose=1) # t-SNE for visulization output = np.concatenate((feature_map_of_random, feature_map_of_minist, feature_map_of_minist_1)) output = output.reshape(output.shape[0], -1) anomaly_flag = np.array([1]*100+ [0]*300) X_embedded = TSNE(n_components=2).fit_transform(output) plt.figure(5) plt.title("t-SNE embedding on the feature representation") plt.scatter(X_embedded[:100,0], X_embedded[:100,1], label='random noise(anomaly)') plt.scatter(X_embedded[100:400,0], X_embedded[100:400,1], label='mnist(anomaly)') plt.scatter(X_embedded[400:,0], X_embedded[400:,1], label='mnist(normal)') plt.legend() plt.show()
anogan.py
from __future__ import print_function from keras.models import Sequential, Model from keras.layers import Input, Reshape, Dense, Dropout, MaxPooling2D, Conv2D, Flatten from keras.layers import Conv2DTranspose, LeakyReLU from keras.layers.core import Activation from keras.layers.normalization import BatchNormalization from keras.optimizers import Adam, RMSprop from keras import backend as K from keras import initializers import tensorflow as tf import numpy as np from tqdm import tqdm import cv2 import math from keras.utils. generic_utils import Progbar ### combine images for visualization def combine_images(generated_images): num = generated_images.shape[0] width = int(math.sqrt(num)) height = int(math.ceil(float(num)/width)) shape = generated_images.shape[1:4] image = np.zeros((height*shape[0], width*shape[1], shape[2]), dtype=generated_images.dtype) for index, img in enumerate(generated_images): i = int(index/width) j = index % width image[i*shape[0]:(i+1)*shape[0], j*shape[1]:(j+1)*shape[1],:] = img[:, :, :] return image ### generator model define def generator_model(): inputs = Input((10,)) fc1 = Dense(input_dim=10, units=128*7*7)(inputs) fc1 = BatchNormalization()(fc1) fc1 = LeakyReLU(0.2)(fc1) fc2 = Reshape((7, 7, 128), input_shape=(128*7*7,))(fc1) up1 = Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same')(fc2) conv1 = Conv2D(64, (3, 3), padding='same')(up1) conv1 = BatchNormalization()(conv1) conv1 = Activation('relu')(conv1) up2 = Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same')(conv1) conv2 = Conv2D(1, (5, 5), padding='same')(up2) outputs = Activation('tanh')(conv2) model = Model(inputs=[inputs], outputs=[outputs]) return model ### discriminator model define def discriminator_model(): inputs = Input((28, 28, 1)) conv1 = Conv2D(64, (5, 5), padding='same')(inputs) conv1 = LeakyReLU(0.2)(conv1) pool1 = MaxPooling2D(pool_size=(2, 2))(conv1) conv2 = Conv2D(128, (5, 5), padding='same')(pool1) conv2 = LeakyReLU(0.2)(conv2) pool2 = MaxPooling2D(pool_size=(2, 2))(conv2) fc1 = Flatten()(pool2) fc1 = Dense(1)(fc1) outputs = Activation('sigmoid')(fc1) model = Model(inputs=[inputs], outputs=[outputs]) return model ### d_on_g model for training generator def generator_containing_discriminator(g, d): d.trainable = False ganInput = Input(shape=(10,)) x = g(ganInput) ganOutput = d(x) gan = Model(inputs=ganInput, outputs=ganOutput) # gan.compile(loss='binary_crossentropy', optimizer='adam') return gan def load_model(): d = discriminator_model() g = generator_model() d_optim = RMSprop() g_optim = RMSprop(lr=0.0002) g.compile(loss='binary_crossentropy', optimizer=g_optim) d.compile(loss='binary_crossentropy', optimizer=d_optim) d.load_weights('./weights/discriminator.h5') g.load_weights('./weights/generator.h5') return g, d ### train generator and discriminator def train(BATCH_SIZE, X_train): ### model define d = discriminator_model() g = generator_model() d_on_g = generator_containing_discriminator(g, d) d_optim = RMSprop(lr=0.0004) g_optim = RMSprop(lr=0.0002) g.compile(loss='mse', optimizer=g_optim) d_on_g.compile(loss='mse', optimizer=g_optim) d.trainable = True d.compile(loss='mse', optimizer=d_optim) for epoch in range(10): print ("Epoch is", epoch) n_iter = int(X_train.shape[0]/BATCH_SIZE) progress_bar = Progbar(target=n_iter) for index in range(n_iter): # create random noise -> U(0,1) 10 latent vectors noise = np.random.uniform(0, 1, size=(BATCH_SIZE, 10)) # load real data & generate fake data image_batch = X_train[index*BATCH_SIZE:(index+1)*BATCH_SIZE] generated_images = g.predict(noise, verbose=0) # visualize training results if index % 20 == 0: image = combine_images(generated_images) image = image*127.5+127.5 cv2.imwrite('./result/'+str(epoch)+"_"+str(index)+".png", image) # attach label for training discriminator X = np.concatenate((image_batch, generated_images)) y = np.array([1] * BATCH_SIZE + [0] * BATCH_SIZE) # training discriminator d_loss = d.train_on_batch(X, y) # training generator d.trainable = False g_loss = d_on_g.train_on_batch(noise, np.array([1] * BATCH_SIZE)) d.trainable = True progress_bar.update(index, values=[('g',g_loss), ('d',d_loss)]) print ('') # save weights for each epoch g.save_weights('weights/generator.h5', True) d.save_weights('weights/discriminator.h5', True) return d, g ### generate images def generate(BATCH_SIZE): g = generator_model() g.load_weights('weights/generator.h5') noise = np.random.uniform(0, 1, (BATCH_SIZE, 10)) generated_images = g.predict(noise) return generated_images ### anomaly loss function def sum_of_residual(y_true, y_pred): return K.sum(K.abs(y_true - y_pred)) ### discriminator intermediate layer feautre extraction def feature_extractor(d=None): if d is None: d = discriminator_model() d.load_weights('weights/discriminator.h5') intermidiate_model = Model(inputs=d.layers[0].input, outputs=d.layers[-7].output) intermidiate_model.compile(loss='binary_crossentropy', optimizer='rmsprop') return intermidiate_model ### anomaly detection model define def anomaly_detector(g=None, d=None): if g is None: g = generator_model() g.load_weights('weights/generator.h5') intermidiate_model = feature_extractor(d) intermidiate_model.trainable = False g = Model(inputs=g.layers[1].input, outputs=g.layers[-1].output) g.trainable = False # Input layer cann't be trained. Add new layer as same size & same distribution aInput = Input(shape=(10,)) gInput = Dense((10), trainable=True)(aInput) gInput = Activation('sigmoid')(gInput) # G & D feature G_out = g(gInput) D_out= intermidiate_model(G_out) model = Model(inputs=aInput, outputs=[G_out, D_out]) model.compile(loss=sum_of_residual, loss_weights= [0.90, 0.10], optimizer='rmsprop') # batchnorm learning phase fixed (test) : make non trainable K.set_learning_phase(0) return model ### anomaly detection def compute_anomaly_score(model, x, iterations=500, d=None): z = np.random.uniform(0, 1, size=(1, 10)) intermidiate_model = feature_extractor(d) d_x = intermidiate_model.predict(x) # learning for changing latent loss = model.fit(z, [x, d_x], batch_size=1, epochs=iterations, verbose=0) similar_data, _ = model.predict(z) loss = loss.history['loss'][-1] return loss, similar_data
效果圖:
detect strange imager never seen!!! refer:https://github.com/yjucho1/anoGAN
## compute anomaly score - sample from strange image test_img = plt.imread('assets/test_img.png') test_img = test_img[:,:,0] model = anogan.anomaly_detector() ano_score, similar_img = anogan.compute_anomaly_score(model, test_img.reshape(1, 28, 28, 1)) plt.figure(figsize=(2, 2)) plt.imshow(test_img.reshape(28,28), cmap=plt.cm.gray) plt.show() print("anomaly score : " + str(ano_score)) plt.figure(figsize=(2, 2)) plt.imshow(test_img.reshape(28,28), cmap=plt.cm.gray) residual = test_img.reshape(28,28) - similar_img.reshape(28, 28) plt.imshow(residual, cmap='jet', alpha=.5) plt.show()
anomaly score : 446.46844482421875
https://github.com/yjucho1/anoGAN
from keras.models import Sequential, Model from keras.layers import Input, Reshape, Dense, Dropout, UpSampling2D, Conv2D, Flatten from keras.layers.advanced_activations import LeakyReLU from keras.optimizers import Adam from keras import backend as K from keras import initializers import tensorflow as tf import numpy as np from tqdm import tqdm def generator_model(): generator = Sequential() generator.add(Dense(128*7*7, input_dim=100, kernel_initializer=initializers.RandomNormal(stddev=0.02))) generator.add(LeakyReLU(0.2)) generator.add(Reshape((7, 7, 128))) generator.add(UpSampling2D(size=(2, 2))) generator.add(Conv2D(64, kernel_size=(5, 5), padding='same')) generator.add(LeakyReLU(0.2)) generator.add(UpSampling2D(size=(2, 2))) generator.add(Conv2D(1, kernel_size=(5, 5), padding='same', activation='tanh')) generator.compile(loss='binary_crossentropy', optimizer='adam') return generator def discriminator_model(): discriminator = Sequential() discriminator.add(Conv2D(64, kernel_size=(5, 5), strides=(2, 2), padding='same', input_shape=(28,28, 1), kernel_initializer=initializers.RandomNormal(stddev=0.02))) discriminator.add(LeakyReLU(0.2)) discriminator.add(Dropout(0.3)) discriminator.add(Conv2D(128, kernel_size=(5, 5), strides=(2, 2), padding='same')) discriminator.add(LeakyReLU(0.2)) discriminator.add(Dropout(0.3)) discriminator.add(Flatten()) discriminator.add(Dense(1, activation='sigmoid')) discriminator.compile(loss='binary_crossentropy', optimizer='adam') return discriminator def generator_containing_discriminator(g, d): d.trainable = False ganInput = Input(shape=(100,)) x = g(ganInput) ganOutput = d(x) gan = Model(inputs=ganInput, outputs=ganOutput) gan.compile(loss='binary_crossentropy', optimizer='adam') return gan def train(BATCH_SIZE, X_train): d = discriminator_model() print("#### discriminator ######") d.summary() g = generator_model() print("#### generator ######") g.summary() d_on_g = generator_containing_discriminator(g, d) d.trainable = True for epoch in tqdm(range(200)): for index in range(int(X_train.shape[0]/BATCH_SIZE)): noise = np.random.uniform(0, 1, size=(BATCH_SIZE, 100)) image_batch = X_train[index*BATCH_SIZE:(index+1)*BATCH_SIZE] generated_images = g.predict(noise, verbose=0) X = np.concatenate((image_batch, generated_images)) y = np.array([1] * BATCH_SIZE + [0] * BATCH_SIZE) d_loss = d.train_on_batch(X, y) noise = np.random.uniform(0, 1, (BATCH_SIZE, 100)) d.trainable = False g_loss = d_on_g.train_on_batch(noise, np.array([1] * BATCH_SIZE)) d.trainable = True g.save_weights('assets/generator', True) d.save_weights('assets/discriminator', True) return d, g def generate(BATCH_SIZE): g = generator_model() g.load_weights('assets/generator') noise = np.random.uniform(0, 1, (BATCH_SIZE, 100)) generated_images = g.predict(noise) return generated_images def sum_of_residual(y_true, y_pred): return tf.reduce_sum(abs(y_true - y_pred)) def feature_extractor(): d = discriminator_model() d.load_weights('assets/discriminator') intermidiate_model = Model(inputs=d.layers[0].input, outputs=d.layers[-5].output) intermidiate_model.compile(loss='binary_crossentropy', optimizer='adam') return intermidiate_model def anomaly_detector(): g = generator_model() g.load_weights('assets/generator') g.trainable = False intermidiate_model = feature_extractor() intermidiate_model.trainable = False aInput = Input(shape=(100,)) gInput = Dense((100))(aInput) G_out = g(gInput) D_out= intermidiate_model(G_out) model = Model(inputs=aInput, outputs=[G_out, D_out]) model.compile(loss=sum_of_residual, loss_weights= [0.9, 0.1], optimizer='adam') return model def compute_anomaly_score(model, x): z = np.random.uniform(0, 1, size=(1, 100)) intermidiate_model = feature_extractor() d_x = intermidiate_model.predict(x) loss = model.fit(z, [x, d_x], epochs=500, verbose=0) similar_data, _ = model.predict(z) return loss.history['loss'][-1], similar_data
GAN異常檢測的一些實驗
要做基於GANomaly的異常檢測實驗,需要准備大量的OK樣本和少量的NG樣本。找不到合適的數據集怎么辦?很簡單,隨便找個開源的分類數據集,將其中一個類別的樣本當作異常類別,其他所有類別的樣本當作正常樣本即可,文章中的實驗就是這么干的。具體試驗結果如下:
反正在效果上,GANomaly是超過了之前兩種代表性的方法。此外,作者還做了性能對比的實驗。事實上前面已經介紹了GANomaly的推斷方法,就是一個簡單的前向傳播和一個對比閾值的過程,因此速度非常快。具體結果如下:
可以看出,計算性能上,GANomaly表現也是非常不錯的。