使用jieba和wordcloud進行中文分詞並生成《悲傷逆流成河》詞雲


因為詞雲有利於體現文本信息,所以我就將那天無聊時爬取的《悲傷逆流成河》的評論處理了一下,生成了詞雲。

關於爬取影評的爬蟲大概長這個樣子(實際上是沒有爬完的):

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time    : 2018/10/15 16:34
# @Author  : Sa.Song
# @Desc    : 爬取買貓眼電影悲傷逆流成河的評論
# @File    : maoyan_BS.py
# @Software: PyCharm

import requests
import json
import pymysql



header = {
    'Accept-Encoding':'gzip, deflate',
    'Accept-Language':'zh-CN,zh;q=0.9',
    'Connection':'keep-alive',
    'Host':'m.maoyan.com',
    'Referer':'http://m.maoyan.com/movie/1217236/comments?_v_=yes',
    'User-Agent':'Mozilla/5.0 (Linux; Android 6.0; Nexus 5 Build/MRA58N) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/69.0.3497.100 Mobile Safari/537.36'
}
num = 0
month = 9
day = 21


conn = pymysql.connect('118.24.26.224','root','123456','cnblogs')
cursor = conn.cursor()

while True:
    startTime = '2018-{0}-{1}'.format(month, day)
    day += 1
    if day == 31:
        day = 1
        month = 10
    if day == 18:
        break

    for i in range(67):
        url = 'http://m.maoyan.com/mmdb/comments/movie/1217236.json?_v_=yes&offset={0}&startTime={1}%2010%3A16%3A18'.format(num, startTime)
        num += 15
        if num == 1005:
            num = 0
        print(url)
        reslut = requests.get(url=url, headers=header)
        data = json.loads(reslut.text)
        if data['total'] == 0:
            break
        else:
            message = data['cmts']
            for i in message:
                name = i.get('nickName')
                sex = i.get('gender')
                city = i.get('cityName')
                user_grade = i.get('userLevel')
                score = i.get('score')
                content = i.get('content')
                time = i.get('startTime')
                if not sex:
                    sex = 0
                sql = """insert into maoyan_comment(name,sex,city,user_grade,score,content,time) values("{0}","{1}","{2}","{3}","{4}","{5}","{6}")"""\
                                                                        .format(name,sex,city,user_grade,score,pymysql.escape_string(content),time)
                cursor.execute(sql)
                print(content)
                print(time)
                print('--------------------------------------------------------------------->')
                conn.commit()

在獲取到文本之后我們就可以開始下面的工作了。

先說一下總體流程:

  獲取文本-->對文本進行處理,分詞(將完整的句子分割成一個一個的詞語)-->加載停用詞表剔除掉廢詞,無用詞(如語氣詞等)-->根據分割好的詞生成詞雲

介紹一下jieba:

  也叫“結巴”中文分詞,一個強大且完善的中文分詞組件,它對於許多語言都有實現版,python版本同時支持py2和py3

  jieba主要有一下幾個特性:

    支持三種分詞模式:

      (1)精准模式,將句子精確的分開,不會向字符串中添加字詞,適合文本分析  

       (2) 全局模式,將句子中所有可以成詞的詞語都掃描出來,速度快,但是不能解決歧義

       (3)搜索引擎模式,在精准模式基礎上,對長詞進行再分割,使用隱馬爾科夫模型

    支持繁體分詞

    支持自定義詞典

    MIT授權協議

  分詞功能:

    jieba.cut方法接受三個參數:需要分割的字符串、cut_all 參數用來控制是否使用全模式, HMM參數用來控制是否使用NMM(隱馬爾科夫模型)

    jieba.cut_for_search()接受兩個參數:需要分詞的字符串;是否使用 HMM 模型。該方法適合用於搜索引擎構建倒排索引的分詞,粒度比較細

    待分詞的字符串可以是 unicode 或 UTF-8 字符串、GBK 字符串。注意:不建議直接輸入 GBK 字符串,可能無法預料地錯誤解碼成 UTF-8

    jieba.cut 以及 jieba.cut_for_search 返回的結構都是一個可迭代的 generator,可以使用 for 循環來獲得分詞后得到的每一個詞語(unicode),或者用jieba.lcut 以及         jieba.lcut_for_search 直接返回 list

    jieba.Tokenizer(dictionary=DEFAULT_DICT) 新建自定義分詞器,可用於同時使用不同詞典。jieba.dt 為默認分詞器,所有全局分詞相關函數都是該分詞器的映射。

  關鍵詞提取功能:

    關鍵詞提取基於兩種算法: TF-IDF 算法 與 TextRank 算法

    (TF-IDF 算法)

      

      outstr 為待提取的文本

      topK 為返回幾個詞頻最大的值

      withWeight 為是否返回詞頻,默認為False

      allowPOS 僅指定詞性的詞,默認為空,不篩選

     (TextRank 算法)

       

介紹一下wordcloud:

   wordcloud庫是基於Python的詞雲生成器,支持py2與py3.

   wordcloud庫最重要的類:WordCloud類,這個類的屬性半酣了詞雲生成過程中的各項相關參數,方法則包含了文本分析,慈雲的生成,繪制等一系列函數。

  屬性(22個):  

 1 font_path : string //字體路徑,需要展現什么字體就把該字體路徑+后綴名寫上,如:font_path = '黑體.ttf'
 2 
 3 width : int (default=400) //輸出的畫布寬度,默認為400像素
 4 
 5 height : int (default=200) //輸出的畫布高度,默認為200像素
 6 
 7 prefer_horizontal : float (default=0.90) //詞語水平方向排版出現的頻率,默認 0.9 (所以詞語垂直方向排版出現頻率為 0.1 8 
 9 mask : nd-array or None (default=None) //如果參數為空,則使用二維遮罩繪制詞雲。如果 mask 非空,設置的寬高值將被忽略,遮罩形狀被 mask 取代。
10 
11 除全白(#FFFFFF)的部分將不會繪制,其余部分會用於繪制詞雲。如:bg_pic = imread('讀取一張圖片.png'),
12 
13 背景圖片的畫布一定要設置為白色(#FFFFFF),然后顯示的形狀為不是白色的其他顏色。可以用ps工具將自己要顯示的形狀復制到一個純白色的畫布上再保存,就ok了。
14 
15 scale : float (default=1) //按照比例進行放大畫布,如設置為1.5,則長和寬都是原來畫布的1.5倍。
16 
17 min_font_size : int (default=4) //顯示的最小的字體大小
18 
19 font_step : int (default=1) //字體步長,如果步長大於1,會加快運算但是可能導致結果出現較大的誤差。
20 
21 max_words : number (default=200) //要顯示的詞的最大個數
22 
23 stopwords : set of strings or None //設置需要屏蔽的詞,如果為空,則使用內置的STOPWORDS
24 
25 background_color : color value (default=”black”) //背景顏色,如
26 
27 background_color='white',背景顏色為白色。
28 
29 max_font_size : int or None (default=None) //顯示的最大的字體大小
30 
31 mode : string (default=”RGB”) //當參數為“RGBA”並且
32 
33 background_color不為空時,背景為透明。
34 
35 relative_scaling : float (default=.5) //詞頻和字體大小的關聯性
36 
37 color_func : callable, default=None //生成新顏色的函數,如果為空,則使用 self.color_func
38 
39 regexp : string or None (optional) //使用正則表達式分隔輸入的文本
40 
41 collocations : bool, default=True //是否包括兩個詞的搭配
42 
43 colormap : string or matplotlib colormap, default=”viridis” //給每個單詞隨機分配顏色,若指定color_func,則忽略該方法。
44 
45 fit_words(frequencies) //根據詞頻生成詞雲【frequencies,為字典類型】
46 
47 generate(text) //根據文本生成詞雲
48 
49 generate_from_frequencies(frequencies[, ...]) //根據詞頻生成詞雲
50 
51 generate_from_text(text) //根據文本生成詞雲
52 
53 process_text(text) //將長文本分詞並去除屏蔽詞(此處指英語,中文分詞還是需要自己用別的庫先行實現,使用上面的 fit_words(frequencies) )
54 
55 recolor([random_state, color_func, colormap]) //對現有輸出重新着色。重新上色會比重新生成整個詞雲快很多。
56 
57 to_array() //轉化為 numpy array
58 
59 to_file(filename) //輸出到文件

 

 

到這里jieba和wordcloud基本介紹就講完了,下面主要是代碼實現部分:

加載模塊、讀取本地文檔、加載停用詞表、加載字體(中文分詞必須使用)、加載詞雲圖片模板、對文檔的處理

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time    : 2018/10/22 9:17
# @Author  : Sa.Song
# @Desc    : jieba分詞與wordcloud提取詞雲
# @File    : jieba_wordcloud.py
# @Software: PyCharm

import jieba
from wordcloud import WordCloud
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
import jieba.analyse


with open(r'C:\Users\songsa\Desktop\maoyan_comment.txt', 'r', encoding='utf-8') as f:  # 本地文本文檔
    text = f.read()
with open(r'C:\Users\songsa\Desktop\tingyongci1.txt', 'r') as f:  # 本地的停用詞表
    tingyongci = f.read()

path = r'C:\Users\songsa\Desktop\xia.jpg'  # 本地的圖片模板
font = r'C:\Users\songsa\Desktop\youyuan.TTF'  # 本地的字體(中文分詞要用)

text = text.replace('','')
text = text.replace('1','')
text = text.replace('','')
text = text.replace('','')
text = text.replace('.','')
text = text.replace('','')
str_list = jieba.cut(text, HMM=True) #使用精准模式來分詞

'''加載停用詞表並去掉停用詞'''
outstr = ''
for word in str_list:
    if word not in tingyongci:
        if word != '\t':
            outstr += word
            outstr += ' '

這里的outstr就是分詞后用‘ ’拼接起來的一個一個詞雲的字符串。

下面在生成詞雲時時其實是有兩種方法的:一種時直接根據分好的詞來生成詞雲(內部自動提取關鍵詞)

使用的是它:  wc.generate_from_text(outstr)

img = Image.open(path)  # 打開圖片
img_array = np.array(img)  # 將圖片轉換為數組
wc = WordCloud(
    background_color='black',
    mask=img_array,
    font_path=font,
    # mode='RGBA',
    max_words=30  # 提取的關鍵詞的最大個數
)
wc.generate_from_text(outstr) # 根據切好的詞來繪制詞雲圖,自動提取關鍵詞
# wc.generate_from_frequencies(new_outstr)  # 根據給定的關鍵詞和詞頻(字典格式)來畫詞雲圖
# plt.figure()  # 創建一個畫圖窗口
plt.show()
wc.to_file(r'C:\Users\songsa\Desktop\a.png')

另一種是先根據分割好的詞提取出關鍵詞,然后利用關鍵詞生成詞雲,

使用的是它: wc.generate_from_frequencies(new_outstr)

# for keyword in jieba.analyse.extract_tags(outstr, topK=20, withWeight=True):  # 根據詞頻來獲取關鍵詞
#     print(keyword)
new_outstr = {}
for keyword in jieba.analyse.textrank(outstr, topK=30, withWeight=True):  # 根據權重來獲取關鍵詞
    new_outstr[keyword[0]] = keyword[1]


img = Image.open(path)  # 打開圖片
img_array = np.array(img)  # 將圖片轉換為數組
wc = WordCloud(
    background_color='black',
    mask=img_array,
    font_path=font,
    # mode='RGBA',
    max_words=30  # 提取的關鍵詞的最大個數
)
# wc.generate_from_text(outstr)  # 根據切好的詞來繪制詞雲圖,自動提取關鍵詞
wc.generate_from_frequencies(new_outstr)  # 根據給定的關鍵詞和詞頻(字典格式)來畫詞雲圖
# plt.figure()  # 創建一個畫圖窗口
plt.show()
wc.to_file(r'C:\Users\songsa\Desktop\a.png')

但是這種方式還需要注意一點,就是選擇根據詞頻來提取關鍵詞還是根據權重來提取關鍵詞。

這樣的話,根據評論提取關鍵詞並生成詞雲就成功了:

這是詞雲模板圖片:

 

 

詞雲圖片:

這里是我的停用詞表和字體文件:

鏈接:https://pan.baidu.com/s/1U_9F0ux1voc4kX8l4UFRIw
提取碼:r64t

想了解更多Python關於爬蟲、數據分析的內容,歡迎大家關注我的微信公眾號:悟道Python

  

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM