最小堆 構建、插入、刪除的過程圖解


1.簡介

       最小堆是一棵完全二叉樹,非葉子結點的值不大於左孩子和右孩子的值。本文以圖解的方式,說明

最小堆的構建、插入、刪除的過程。搞懂最小堆的相應知識后,最大堆與此類似。

2.最小堆示例

3.最小堆的構建

      初始數組為:9,3,7,6,5,1,10,2

      按照完全二叉樹,將數字依次填入。

      填入后,找到最后一個結點(本示例為數字2的節點),從它的父節點(本示例為數字6的節點)

開始調整。根據性質,小的數字往上移動;至此,第1次調整完成。

      注意,被調整的節點,還有子節點的情況,需要遞歸進行調整。

      第二次調整,是數字6的節點數組下標小1的節點(比數字6的下標小1的節點是數字7的節點),

用剛才的規則進行調整。以此類推,直到調整到根節點。

      以下是本示例的圖解:

注意:數字9的節點 將和 數字1的節點 發生對調,對調后,需要遞歸進行調整,請一定注意。

 

 

4.最小堆的元素插入

       以上個最小堆為例,插入數字0。

       數字0的節點首先加入到該二叉樹最后的一個節點,依據最小堆的定義,自底向上,遞歸調整。

       以下是插入操作的圖解:

 

5.最小堆的節點刪除

       對於最小堆和最大堆而言,刪除是針對於根節點而言。

       對於刪除操作,將二叉樹的最后一個節點替換到根節點,然后自頂向下,遞歸調整。

       以下是圖解:

--------------------- 作者:Running07 來源:CSDN 原文:https://blog.csdn.net/hrn1216/article/details/51465270?utm_source=copy 版權聲明:本文為博主原創文章,轉載請附上博文鏈接!


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM