決策樹是一種用於分類和回歸的非參數監督學習方法。目標是創建一個模型,通過從數據特性中推導出簡單的決策規則來預測目標變量的值
導入類庫
1 import numpy as np 2 import pandas as pd 3 from sklearn.feature_extraction import DictVectorizer 4 from sklearn.tree import DecisionTreeClassifier 5 from sklearn.model_selection import train_test_split
簡單版
1 def decide_play1(): 2 df = pd.read_csv('dtree.csv') 3 dict_train = df.to_dict(orient='record') 4 5 dv = DictVectorizer(sparse=False) 6 dv_train = dv.fit_transform(dict_train) 7 # print(dv_train) 8 # dv_train1 = np.append(dv_train, dv_train[:, 5].reshape(-1, 1), axis=1) 9 # dv_train2 = np.delete(dv_train1, 5, axis=1) 10 # print('*' * 50) 11 # print(dv_train2) 12 13 # print(dv_train[:,:5]) 14 # print(dv_train[:,6:]) 15 # print(dv_train[:,5]) 16 y = dv_train[:, 5] 17 x = np.delete(dv_train, 5, axis=1) 18 print(x) 19 print(y) 20 dtc = DecisionTreeClassifier() 21 dtc.fit(x, y.reshape(-1, 1)) 22 print(dtc.predict(np.array([x[3]])))
正式版
1 def decide_play(): 2 # ID3 3 df = pd.read_csv('dtree.csv') 4 # 將數據轉換為字典格式,orient='record'參數指定數據格式為{column:value,column:value}的形式 5 dict_train = df.loc[:, ['Outlook', 'Temperatur', 'Humidity', 'Windy']].to_dict(orient='record') 6 dict_target = pd.DataFrame(df['PlayGolf'], columns=['PlayGolf']).to_dict(orient='record') 7 8 9 # 訓練數據字典向量化 10 dv_train = DictVectorizer(sparse=False) 11 x_train = dv_train.fit_transform(dict_train) 12 13 # 目標數據字典向量化 14 dv_target = DictVectorizer(sparse=False) 15 y_target = dv_target.fit_transform(dict_target) 16 17 # 創建訓練模型並訓練 18 d_tree = DecisionTreeClassifier() 19 d_tree.fit(x_train, y_target) 20 21 data_predict = { 22 'Humidity': 85, 23 'Outlook': 'sunny', 24 'Temperatur': 85, 25 'Windy': False 26 } 27 28 x_data = dv_train.transform(data_predict) 29 print(dv_target.inverse_transform(d_tree.predict(x_data))) 30 31 32 if __name__ == '__main__': 33 decide_play()
泰坦尼克生存率決策
1 import numpy as np 2 import pandas as pd 3 from sklearn.feature_extraction import DictVectorizer 4 from sklearn.model_selection import train_test_split 5 from sklearn.tree import DecisionTreeClassifier 6 from sklearn.metrics import r2_score 7 8 9 def titanic_tree(): 10 # 獲取數據 11 df = pd.read_csv('Titanic.csv') 12 # df = df.fillna(0) 13 # dict_train = df.loc[:, ['Pclass', 'Age', 'Sex']].to_dict(orient='record') 14 # dict_target = pd.DataFrame(df['Survived'], columns=['Survived']).to_dict(orient='record') 15 # x_train, x_test, y_train, y_test = train_test_split(dict_train, dict_target, test_size=0.25) 16 17 # 處理數據,找出特征值和目標值 18 x = df.loc[:, ['Pclass', 'Age', 'Sex']] 19 y = df.loc[:, ['Survived']] 20 # 缺失值處理 21 x['Age'].fillna(x['Age'].mean(), inplace=True) 22 # 分割數據集到訓練集和測試集 23 x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25) 24 # print(y_test) 25 dv_train = DictVectorizer(sparse=False) 26 x_train = dv_train.fit_transform(x_train.to_dict(orient='record')) 27 x_test = dv_train.transform(x_test.to_dict(orient='record')) 28 29 dv_target = DictVectorizer(sparse=False) 30 y_target = dv_target.fit_transform(y_train.to_dict(orient='record')) 31 y_test = dv_target.transform(y_test.to_dict(orient='record')) 32 # print(y_test) 33 # 用決策樹進行預測 34 d_tree = DecisionTreeClassifier() 35 d_tree.fit(x_train, y_train) 36 37 data_predict = { 38 'Pclass': 1, 39 'Age': 38, 40 'Sex': 'female' 41 42 } 43 44 x_data = dv_train.transform(data_predict) 45 print(dv_target.inverse_transform(d_tree.predict(x_data).reshape(-1,1))) 46 # print(d_tree.predict(x_test)) 47 # print(y_test) 48 # 預測准確率 49 # print(d_tree.score(x_test, y_test)) 50 51 52 if __name__ == '__main__': 53 titanic_tree()
(Decision Tree)及其變種是另一類將輸入空間分成不同的區域,每個區域有獨立參數的算法。
決策樹分類算法是一種基於實例的歸納學習方法,它能從給定的無序的訓練樣本中,提煉出樹型的分類模型。樹中的每個非葉子節點記錄了使用哪個特征來進行類別的判斷,每個葉子節點則代表了最后判斷的類別。根節點到每個葉子節點均形成一條分類的路徑規則。而對新的樣本進行測試時,只需要從根節點開始,在每個分支節點進行測試,沿着相應的分支遞歸地進入子樹再測試,一直到達葉子節點,該葉子節點所代表的類別即是當前測試樣本的預測類別