機器學習——決策樹


1.決策樹的構造

優點:計算復雜度不高,輸出結果易於理解,對中間值的缺失不敏感,可以處理不相關特征數據

缺點:可能會產生過度匹配問題

適用數據類型:數值型和標稱型

 

# coding:utf-8
# !/usr/bin/env python

'''
Created on Oct 12, 2010
Decision Tree Source Code for Machine Learning in Action Ch. 3
@author: Peter Harrington
'''
from math import log
import operator

#通過是否浮出水面和是否有腳蹼,來划分魚類和非魚類
def createDataSet():
    dataSet = [[1, 1, 'yes'],
               [1, 1, 'yes'],
               [1, 0, 'no'],
               [0, 1, 'no'],
               [0, 1, 'no']]
    labels = ['no surfacing','flippers']
    #change to discrete values
    return dataSet, labels

def calcShannonEnt(dataSet):	#計算給定數據集的香農熵
    numEntries = len(dataSet)	#數據集中的實例總數
    labelCounts = {}
    #為所有可能的分類創建字典,鍵是可能的特征屬性,值是含有這個特征屬性的總數
    for featVec in dataSet:
        currentLabel = featVec[-1]
        if currentLabel not in labelCounts.keys(): labelCounts[currentLabel] = 0
        labelCounts[currentLabel] += 1
    #計算香農熵
    shannonEnt = 0.0
    #為所有的分類計算香農熵
    for key in labelCounts:
        prob = float(labelCounts[key])/numEntries
        shannonEnt -= prob * log(prob,2) 	#以2為底求對數
    #香農熵Ent的值越小,純度越高,即通過這個特征屬性來分類,屬於同一類別的結點會比較多
    return shannonEnt
    
def splitDataSet(dataSet, axis, value):
    retDataSet = []
    for featVec in dataSet:
        if featVec[axis] == value:
            reducedFeatVec = featVec[:axis]     #chop out axis used for splitting
            reducedFeatVec.extend(featVec[axis+1:])
            retDataSet.append(reducedFeatVec)
    return retDataSet
    
def chooseBestFeatureToSplit(dataSet):
    numFeatures = len(dataSet[0]) - 1      #the last column is used for the labels
    baseEntropy = calcShannonEnt(dataSet)
    bestInfoGain = 0.0; bestFeature = -1
    for i in range(numFeatures):        #iterate over all the features
        featList = [example[i] for example in dataSet]#create a list of all the examples of this feature
        uniqueVals = set(featList)       #get a set of unique values
        newEntropy = 0.0
        for value in uniqueVals:
            subDataSet = splitDataSet(dataSet, i, value)
            prob = len(subDataSet)/float(len(dataSet))
            newEntropy += prob * calcShannonEnt(subDataSet)     
        infoGain = baseEntropy - newEntropy     #calculate the info gain; ie reduction in entropy
        if (infoGain > bestInfoGain):       #compare this to the best gain so far
            bestInfoGain = infoGain         #if better than current best, set to best
            bestFeature = i
    return bestFeature                      #returns an integer

def majorityCnt(classList):
    classCount={}
    for vote in classList:
        if vote not in classCount.keys(): classCount[vote] = 0
        classCount[vote] += 1
    sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
    return sortedClassCount[0][0]

def createTree(dataSet,labels):
    classList = [example[-1] for example in dataSet]
    if classList.count(classList[0]) == len(classList): 
        return classList[0]#stop splitting when all of the classes are equal
    if len(dataSet[0]) == 1: #stop splitting when there are no more features in dataSet
        return majorityCnt(classList)
    bestFeat = chooseBestFeatureToSplit(dataSet)
    bestFeatLabel = labels[bestFeat]
    myTree = {bestFeatLabel:{}}
    del(labels[bestFeat])
    featValues = [example[bestFeat] for example in dataSet]
    uniqueVals = set(featValues)
    for value in uniqueVals:
        subLabels = labels[:]       #copy all of labels, so trees don't mess up existing labels
        myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value),subLabels)
    return myTree                            
    
def classify(inputTree,featLabels,testVec):
    firstStr = inputTree.keys()[0]
    secondDict = inputTree[firstStr]
    featIndex = featLabels.index(firstStr)
    key = testVec[featIndex]
    valueOfFeat = secondDict[key]
    if isinstance(valueOfFeat, dict): 
        classLabel = classify(valueOfFeat, featLabels, testVec)
    else: classLabel = valueOfFeat
    return classLabel

def storeTree(inputTree,filename):
    import pickle
    fw = open(filename,'w')
    pickle.dump(inputTree,fw)
    fw.close()
    
def grabTree(filename):
    import pickle
    fr = open(filename)
    return pickle.load(fr)
    
    
if __name__ == '__main__':
    myDat,labels = createDataSet()
    print myDat
    print calcShannonEnt(myDat)
	

 

 

#通過是否浮出水面和是否有腳蹼,來划分魚類和非魚類
def createDataSet():
    dataSet = [[1, 1, 'yes'],
               [1, 1, 'yes'],
               [1, 0, 'no'],
               [0, 1, 'no'],
               [0, 1, 'no']]
    labels = ['no surfacing','flippers']
    #change to discrete values
    return dataSet, labels

def calcShannonEnt(dataSet):	#計算給定數據集的香農熵
    numEntries = len(dataSet)	#數據集中的實例總數
    labelCounts = {}
    #為所有可能的分類創建字典,鍵是可能的特征屬性,值是含有這個特征屬性的總數
    for featVec in dataSet:
        currentLabel = featVec[-1]
        if currentLabel not in labelCounts.keys(): labelCounts[currentLabel] = 0
        labelCounts[currentLabel] += 1
    #計算香農熵
    shannonEnt = 0.0
    #為所有的分類計算香農熵
    for key in labelCounts:
        prob = float(labelCounts[key])/numEntries
        shannonEnt -= prob * log(prob,2) 	#以2為底求對數
    #香農熵Ent的值越小,純度越高,即通過這個特征屬性來分類,屬於同一類別的結點會比較多
    return shannonEnt

 

myDat,labels = createDataSet()
print myDat
print calcShannonEnt(myDat)

 

 

2.划分數據集

def splitDataSet(dataSet, axis, value):		#按照給定特征划分數據集,axis表示根據第幾個特征,value表示特征的值
    retDataSet = []				#創建新的list對象
    for featVec in dataSet:
        if featVec[axis] == value:
            reducedFeatVec = featVec[:axis]     #切片
            reducedFeatVec.extend(featVec[axis+1:])	#把序列添加到列表reducedFeatVec中
            #print reducedFeatVec
            retDataSet.append(reducedFeatVec)		#把對象reducedFeatVec(是一個list)添加到列表retDataSet中
    return retDataSet

 

def chooseBestFeatureToSplit(dataSet):		#選擇最好的數據集划分方式
    numFeatures = len(dataSet[0]) - 1      	#特征的數量,最后一列是標簽,所以減去1
    baseEntropy = calcShannonEnt(dataSet)
    bestInfoGain = 0.0; bestFeature = -1	#信息增益和最好的特征下標
    for i in range(numFeatures):        	#遞歸所有特征
        featList = [example[i] for example in dataSet]	#創建一個列表,包含第i個特征的所有值
        uniqueVals = set(featList)       	#創建一個集合set,由不同的元素組成
        newEntropy = 0.0
        for value in uniqueVals:
            subDataSet = splitDataSet(dataSet, i, value)	#按照所有特征的可能划分數據集
            prob = len(subDataSet)/float(len(dataSet))		#計算所有特征的可能性
            newEntropy += prob * calcShannonEnt(subDataSet)     
        infoGain = baseEntropy - newEntropy     #計算信息增益
        if (infoGain > bestInfoGain):       	#比較不同特征之間信息增益的大小
            bestInfoGain = infoGain         	#選取信息增益大的特征
            bestFeature = i
    return bestFeature                      	#返回特征的下標

 

3.遞歸構建決策樹

 

def createTree(dataSet,labels):		#創建決策樹的函數,采用字典的表示形式
    classList = [example[-1] for example in dataSet]
    if classList.count(classList[0]) == len(classList): 	#如果類別完全相同則停止繼續划分
        return classList[0]
    if len(dataSet[0]) == 1: 					#遍歷完所有特征時返回出現次數最多的
        return majorityCnt(classList)
    bestFeat = chooseBestFeatureToSplit(dataSet)		#選擇信息增益最大的特征下標
    bestFeatLabel = labels[bestFeat]				#選擇信息增益最大的特征
    myTree = {bestFeatLabel:{}}
    del(labels[bestFeat])					#從標簽中刪除已經划分好的特征
    featValues = [example[bestFeat] for example in dataSet]	#取得該特征的所有可能取值
    uniqueVals = set(featValues)				#建立一個集合
    for value in uniqueVals:
        subLabels = labels[:]       
        myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value),subLabels)	#遞歸createTree
    return myTree  

 

myDat,labels = createDataSet()
myTree = createTree(myDat,labels)
print myTree

{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}

 

 

4.在Python中使用Matplotlib注解繪制樹形圖

myDat,labels = createDataSet()
print myDat
import treePlotter
treePlotter.createPlot(myTree)  #繪制樹形圖

 

 

5.構造注解樹

 獲取葉節點的數目和樹的層數

import matplotlib.pyplot as plt

decisionNode = dict(boxstyle="sawtooth", fc="0.8")
leafNode = dict(boxstyle="round4", fc="0.8")
arrow_args = dict(arrowstyle="<-")

def getNumLeafs(myTree):		#獲取葉子節點的數目
    numLeafs = 0
    firstStr = myTree.keys()[0]
    secondDict = myTree[firstStr]
    for key in secondDict.keys():
        if type(secondDict[key]).__name__=='dict':	#測試節點的數據類型是否為字典
            numLeafs += getNumLeafs(secondDict[key])	#遞歸
        else:   numLeafs +=1				#如果不是字典,則說明是葉子節點
    return numLeafs

def getTreeDepth(myTree):		#獲取樹的層數
    maxDepth = 0
    firstStr = myTree.keys()[0]
    secondDict = myTree[firstStr]
    for key in secondDict.keys():
        if type(secondDict[key]).__name__=='dict':	#測試節點的數據類型是否為字典,如果不是字典,則說明是葉子節點
            thisDepth = 1 + getTreeDepth(secondDict[key])	#遞歸
        else:   thisDepth = 1				
        if thisDepth > maxDepth: maxDepth = thisDepth
    return maxDepth

 繪制樹形圖

 

 

def plotNode(nodeTxt, centerPt, parentPt, nodeType):	#繪制帶箭頭的注解
    #annotate參數:nodeTxt:標注文本,xy:所要標注的位置坐標,xytext:標注文本所在位置,arrowprops:標注箭頭屬性信息
    createPlot.ax1.annotate(nodeTxt, xy=parentPt,  xycoords='axes fraction',
             xytext=centerPt, textcoords='axes fraction',
             va="center", ha="center", bbox=nodeType, arrowprops=arrow_args )
    
def plotMidText(cntrPt, parentPt, txtString):		#在父子節點間填充文本信息
    xMid = (parentPt[0]-cntrPt[0])/2.0 + cntrPt[0]
    yMid = (parentPt[1]-cntrPt[1])/2.0 + cntrPt[1]
    createPlot.ax1.text(xMid, yMid, txtString, va="center", ha="center", rotation=30)

def plotTree(myTree, parentPt, nodeTxt):		#if the first key tells you what feat was split on
    numLeafs = getNumLeafs(myTree)  			#計算寬與高
    depth = getTreeDepth(myTree)
    firstStr = myTree.keys()[0]     			#the text label for this node should be this
    print plotTree.xOff
    cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW, plotTree.yOff)
    print parentPt
    print cntrPt
    plotMidText(cntrPt, parentPt, nodeTxt)		#標記子節點屬性值
    plotNode(firstStr, cntrPt, parentPt, decisionNode)
    secondDict = myTree[firstStr]
    plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD	#減少y偏移
    for key in secondDict.keys():
        if type(secondDict[key]).__name__=='dict':	#test to see if the nodes are dictonaires, if not they are leaf nodes   
            plotTree(secondDict[key],cntrPt,str(key))        #recursion
        else:   #it's a leaf node print the leaf node
            plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW
            plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
            plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
    plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD
#if you do get a dictonary you know it's a tree, and the first element will be another dict

def createPlot(inTree):			#繪制樹形圖,調用了plotTree()
    fig = plt.figure(1, facecolor='white')
    fig.clf()
    axprops = dict(xticks=[], yticks=[])
    createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)    #no ticks
    #createPlot.ax1 = plt.subplot(111, frameon=False) #ticks for demo puropses 
    plotTree.totalW = float(getNumLeafs(inTree))	#存儲樹的寬度
    plotTree.totalD = float(getTreeDepth(inTree))	#存儲樹的深度
    plotTree.xOff = -0.5/plotTree.totalW; plotTree.yOff = 1.0;
    plotTree(inTree, (0.5,1.0), '')
    plt.show()

 

 

測試和存儲分類器

1.測試算法:使用決策樹執行分類

def classify(inputTree,featLabels,testVec):	#使用決策樹的分類函數
    firstStr = inputTree.keys()[0]
    secondDict = inputTree[firstStr]
    featIndex = featLabels.index(firstStr)	#將標簽字符串轉換為索引
    key = testVec[featIndex]
    valueOfFeat = secondDict[key]
    if isinstance(valueOfFeat, dict): 
        classLabel = classify(valueOfFeat, featLabels, testVec)
    else: classLabel = valueOfFeat
    return classLabel

 

    myDat,labels = createDataSet()
    Labels = labels
    print "myDat="
    print myDat
    print "labels="
    print labels

    import treePlotter
    myTree = treePlotter.retrieveTree(0)	#繪制樹形圖
    print myTree
    print classify(myTree,Labels,[0,1])

 

 2.使用算法:決策樹的存儲

def storeTree(inputTree,filename):	#使用pickle模塊存儲決策樹
    import pickle
    fw = open(filename,'w')
    pickle.dump(inputTree,fw)
    fw.close()
    
def grabTree(filename):			#查看決策樹
    import pickle
    fr = open(filename)
    return pickle.load(fr)

 

    myDat,labels = createDataSet()
    Labels = labels
    print "myDat="
    print myDat
    print "labels="
    print labels
    import treePlotter
    myTree = treePlotter.retrieveTree(0)	#繪制樹形圖
    print myTree
    storeTree(myTree,'classifierStorage.txt')
    print grabTree('classifierStorage.txt')

 

示例:使用決策樹預測隱形眼鏡類型

 

    import treePlotter
    import simplejson
    import ch
    ch.set_ch()
    from matplotlib import pyplot as plt
    fr = open('lenses.txt')
    lenses = [inst.strip().split('\t') for inst in fr.readlines()]	#讀取一行數據,以tab鍵分割並去掉空格
    lensesLabels = [u'年齡',u'近遠視',u'散光',u'眼淚等級']			#使用unicode,不然編碼會報錯
    lensesTree = createTree(lenses,lensesLabels)
    print simplejson.dumps(lensesTree, encoding="UTF-8", ensure_ascii=False)	#使用simplejson模塊輸出對象中的中文
    treePlotter.createPlot(lensesTree)

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM