xgb, lgb, Keras, LR(二分類、多分類代碼)


preprocess

# 通用的預處理框架
 
import pandas as pd
import numpy as np
import scipy as sp
 
# 文件讀取
def read_csv_file(f, logging=False):
    print("==========讀取數據=========")
    data =  pd.read_csv(f)
    if logging:
        print(data.head(5))
        print(f, "包含以下列")
        print(data.columns.values)
        print(data.describe())
        print(data.info())
    return data

Logistic Regression

# 通用的LogisticRegression框架
 
import pandas as pd
import numpy as np
from scipy import sparse
from sklearn.preprocessing import OneHotEncoder
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler
 
# 1. load data
df_train = pd.DataFrame()
df_test  = pd.DataFrame()
y_train = df_train['label'].values
 
# 2. process data
ss = StandardScaler()
 
 
# 3. feature engineering/encoding
# 3.1 For Labeled Feature
enc = OneHotEncoder()
feats = ["creativeID", "adID", "campaignID"]
for i, feat in enumerate(feats):
    x_train = enc.fit_transform(df_train[feat].values.reshape(-1, 1))
    x_test = enc.fit_transform(df_test[feat].values.reshape(-1, 1))
    if i == 0:
        X_train, X_test = x_train, x_test
    else:
        X_train, X_test = sparse.hstack((X_train, x_train)), sparse.hstack((X_test, x_test))
 
# 3.2 For Numerical Feature
# It must be a 2-D Data for StandardScalar, otherwise reshape(-1, len(feats)) is required
feats = ["price", "age"]
x_train = ss.fit_transform(df_train[feats].values)
x_test  = ss.fit_transform(df_test[feats].values)
X_train, X_test = sparse.hstack((X_train, x_train)), sparse.hstack((X_test, x_test))
 
# model training
lr = LogisticRegression()
lr.fit(X_train, y_train)
proba_test = lr.predict_proba(X_test)[:, 1]

LightGBM

1. 二分類

import lightgbm as lgb
import pandas as pd
import numpy as np
import pickle
from sklearn.metrics import roc_auc_score
from sklearn.model_selection import train_test_split
 
print("Loading Data ... ")
 
# 導入數據
train_x, train_y, test_x = load_data()
 
# 用sklearn.cross_validation進行訓練數據集划分,這里訓練集和交叉驗證集比例為7:3,可以自己根據需要設置
X, val_X, y, val_y = train_test_split(
    train_x,
    train_y,
    test_size=0.05,
    random_state=1,
    stratify=train_y ## 這里保證分割后y的比例分布與原數據一致
)
 
X_train = X
y_train = y
X_test = val_X
y_test = val_y
 
 
# create dataset for lightgbm
lgb_train = lgb.Dataset(X_train, y_train)
lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train)
# specify your configurations as a dict
params = {
    'boosting_type': 'gbdt',
    'objective': 'binary',
    'metric': {'binary_logloss', 'auc'},
    'num_leaves': 5,
    'max_depth': 6,
    'min_data_in_leaf': 450,
    'learning_rate': 0.1,
    'feature_fraction': 0.9,
    'bagging_fraction': 0.95,
    'bagging_freq': 5,
    'lambda_l1': 1,  
    'lambda_l2': 0.001,  # 越小l2正則程度越高
    'min_gain_to_split': 0.2,
    'verbose': 5,
    'is_unbalance': True
}
 
# train
print('Start training...')
gbm = lgb.train(params,
                lgb_train,
                num_boost_round=10000,
                valid_sets=lgb_eval,
                early_stopping_rounds=500)
 
print('Start predicting...')
 
preds = gbm.predict(test_x, num_iteration=gbm.best_iteration)  # 輸出的是概率結果
 
# 導出結果
threshold = 0.5
for pred in preds:
    result = 1 if pred > threshold else 0
 
# 導出特征重要性
importance = gbm.feature_importance()
names = gbm.feature_name()
with open('./feature_importance.txt', 'w+') as file:
    for index, im in enumerate(importance):
        string = names[index] + ', ' + str(im) + '\n'
        file.write(string)

2.多分類

import lightgbm as lgb
import pandas as pd
import numpy as np
import pickle
from sklearn.metrics import roc_auc_score
from sklearn.model_selection import train_test_split
 
print("Loading Data ... ")
 
# 導入數據
train_x, train_y, test_x = load_data()
 
# 用sklearn.cross_validation進行訓練數據集划分,這里訓練集和交叉驗證集比例為7:3,可以自己根據需要設置
X, val_X, y, val_y = train_test_split(
    train_x,
    train_y,
    test_size=0.05,
    random_state=1,
    stratify=train_y ## 這里保證分割后y的比例分布與原數據一致
)
 
X_train = X
y_train = y
X_test = val_X
y_test = val_y
 
 
# create dataset for lightgbm
lgb_train = lgb.Dataset(X_train, y_train)
lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train)
# specify your configurations as a dict
params = {
    'boosting_type': 'gbdt',
    'objective': 'multiclass',
    'num_class': 9,
    'metric': 'multi_error',
    'num_leaves': 300,
    'min_data_in_leaf': 100,
    'learning_rate': 0.01,
    'feature_fraction': 0.8,
    'bagging_fraction': 0.8,
    'bagging_freq': 5,
    'lambda_l1': 0.4,
    'lambda_l2': 0.5,
    'min_gain_to_split': 0.2,
    'verbose': 5,
    'is_unbalance': True
}
 
# train
print('Start training...')
gbm = lgb.train(params,
                lgb_train,
                num_boost_round=10000,
                valid_sets=lgb_eval,
                early_stopping_rounds=500)
 
print('Start predicting...')
 
preds = gbm.predict(test_x, num_iteration=gbm.best_iteration)  # 輸出的是概率結果
 
# 導出結果
for pred in preds:
    result = prediction = int(np.argmax(pred))
 
# 導出特征重要性
importance = gbm.feature_importance()
names = gbm.feature_name()
with open('./feature_importance.txt', 'w+') as file:
    for index, im in enumerate(importance):
        string = names[index] + ', ' + str(im) + '\n'
        file.write(string)

XGBoost

1. 二分類

import numpy as np
import pandas as pd
import xgboost as xgb
import time
from sklearn.model_selection import StratifiedKFold
 
 
from sklearn.model_selection import train_test_split
train_x, train_y, test_x = load_data()
 
# 構建特征
 
 
# 用sklearn.cross_validation進行訓練數據集划分,這里訓練集和交叉驗證集比例為7:3,可以自己根據需要設置
X, val_X, y, val_y = train_test_split(
    train_x,
    train_y,
    test_size=0.01,
    random_state=1,
    stratify=train_y
)
 
# xgb矩陣賦值
xgb_val = xgb.DMatrix(val_X, label=val_y)
xgb_train = xgb.DMatrix(X, label=y)
xgb_test = xgb.DMatrix(test_x)
 
# xgboost模型 #####################
 
params = {
    'booster': 'gbtree',
    # 'objective': 'multi:softmax',  # 多分類的問題、
    # 'objective': 'multi:softprob',   # 多分類概率
    'objective': 'binary:logistic',
    'eval_metric': 'logloss',
    # 'num_class': 9,  # 類別數,與 multisoftmax 並用
    'gamma': 0.1,  # 用於控制是否后剪枝的參數,越大越保守,一般0.1、0.2這樣子。
    'max_depth': 8,  # 構建樹的深度,越大越容易過擬合
    'alpha': 0,   # L1正則化系數
    'lambda': 10,  # 控制模型復雜度的權重值的L2正則化項參數,參數越大,模型越不容易過擬合。
    'subsample': 0.7,  # 隨機采樣訓練樣本
    'colsample_bytree': 0.5,  # 生成樹時進行的列采樣
    'min_child_weight': 3,
    # 這個參數默認是 1,是每個葉子里面 h 的和至少是多少,對正負樣本不均衡時的 0-1 分類而言
    # ,假設 h 在 0.01 附近,min_child_weight 為 1 意味着葉子節點中最少需要包含 100 個樣本。
    # 這個參數非常影響結果,控制葉子節點中二階導的和的最小值,該參數值越小,越容易 overfitting。
    'silent': 0,  # 設置成1則沒有運行信息輸出,最好是設置為0.
    'eta': 0.03,  # 如同學習率
    'seed': 1000,
    'nthread': -1,  # cpu 線程數
    'missing': 1,
    'scale_pos_weight': (np.sum(y==0)/np.sum(y==1))  # 用來處理正負樣本不均衡的問題,通常取:sum(negative cases) / sum(positive cases)
    # 'eval_metric': 'auc'
}
plst = list(params.items())
num_rounds = 2000  # 迭代次數
watchlist = [(xgb_train, 'train'), (xgb_val, 'val')]
 
# 交叉驗證
result = xgb.cv(plst, xgb_train, num_boost_round=200, nfold=4, early_stopping_rounds=200, verbose_eval=True, folds=StratifiedKFold(n_splits=4).split(X, y))
 
# 訓練模型並保存
# early_stopping_rounds 當設置的迭代次數較大時,early_stopping_rounds 可在一定的迭代次數內准確率沒有提升就停止訓練
model = xgb.train(plst, xgb_train, num_rounds, watchlist, early_stopping_rounds=200)
model.save_model('../data/model/xgb.model')  # 用於存儲訓練出的模型
 
preds = model.predict(xgb_test)
 
# 導出結果
threshold = 0.5
for pred in preds:
    result = 1 if pred > threshold else 0

處理正負樣本不均勻的案例

# 計算正負樣本比例
positive_num = df_train[df_train['label']==1].values.shape[0]
negative_num = df_train[df_train['label']==0].values.shape[0]
print(float(positive_num)/float(negative_num))

主要思路

  1. 手動調整正負樣本比例
  2. 過采樣 Over-Sampling
    對訓練集里面樣本數量較少的類別(少數類)進行過采樣,合成新的樣本來緩解類不平衡,比如SMOTE算法
  3. 欠采樣 Under-Sampling
  4. 將樣本按比例一一組合進行訓練,訓練出多個弱分類器,最后進行集成


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM