Matlab中FFT快速傅里葉變換函數的應用及其物理意義學習


在Matlab中fft就是一個現成的函數,看別人的代碼模仿着用了,但是不懂FFT畫出來的圖什么意思?本文對這篇博文中分析的例子進行了學習。

 

    FFT(Fast Fourier Transformation)為一階快速傅里葉變換函數,在數字信號處理中有着廣泛的應用,變換結果為復數。有些信號在時域上很難看出變化特征,但如果變換到頻域之后,就很容易看出特征了。FFT把時域信號變換到頻域上,直觀的看各頻率上的信號強弱。 

    一個模擬信號,經過ADC采樣之后,就變成了數字信號。采樣定理告訴我們,采樣頻率要大於信號頻率的兩倍。采樣得到的數字信號,就可以做FFT變換了。N個采樣點,經過FFT之后,就可以得到N個點的FFT結果。為了方便進行FFT運算,通常N取2的整數次方。做FFT分析時,幅值大小與FFT選擇的點數有關,但是不影響分析結果。 

    假設采樣頻率為Fs,信號頻率F,采樣點數為N。那么FFT之后結果就是一個為N點的復數。每一個點就對應着一個頻率點。這個點的模值,就是該頻率值下的幅度特性。具體跟原始信號的幅度有什么關系呢?假設原始信號的峰值為A,那么FFT的結果的每個點(除了第一個點直流分量之外)的模值就是A的N/2倍。而第一個點就是直流分量,它的模值就是直流分量的N倍。而每個點的相位呢,就是在該頻率下的信號的相位。第一個點表示直流分量(即0Hz),而最后一個點N的再下一個點(實際上這個點是不存在的,這里是假設的第N+1個點,也可以看做是將第一個點分做兩半分,另一半移到最后)則表示采樣頻率Fs,這中間被N-1個點平均分成N等份,每個點的頻率依次增加。例如某點n所表示的頻率為:Fn=(n-1)*Fs/N。

    由上面的公式可以看出,Fn所能分辨到頻率為為Fs/N,如果采樣頻率Fs為1024Hz,采樣點數為1024點,則可以分辨到1Hz。1024Hz的采樣率采樣1024點,剛好是1秒,也就是說,采樣1秒時間的信號並做FFT,則結果可以分析到1Hz,如果采樣2秒時間的信號並做FFT,則結果可以分析到0.5Hz。如果要提高頻率分辨力,則必須增加采樣點數,也即采樣時間。頻率分辨率和采樣時間是倒數關系。


    假設FFT之后某點n用復數a+bi表示,那么這個復數的模就是An=sqrt(a*a+b*b),相位就是Pn=atan2(b,a)。根據以上的結果,就可以計算出n點(n≠1,且n<=N/2)對應的信號的表達式為:

An/(N/2)*cos(2*pi*Fn*t+Pn)                                                    (1)

即2*An/N*cos(2*pi*Fn*t+Pn)。對於n=1點的信號,是直流分量,幅度即為A1/N。
    由於FFT結果的對稱性,通常我們只使用前半部分的結果,即小於采樣頻率一半的結果。

 

    假設有一個信號由如下三個分量組成:1)一個2V的直流分量;2)一個頻率為50Hz、相位為-30度、幅度為3V的交流信號;3)一個頻率為75Hz、相位為90度、幅度為1.5V的交流信號。其數學表達如下:

S=2+3*cos(2*pi*50*t-pi*30/180)+1.5*cos(2*pi*75*t+pi*90/180)

式中cos參數為弧度,所以-30度和90度要分別換算成弧度。 

    
    假設以256Hz的采樣率對這個信號進行采樣,總共采樣256點。由前面的分析,Fn=(n-1)*Fs/N,可知:每兩個點之間的間距為1Hz,第n個點的頻率就是n-1。信號S有3個頻率:0Hz、50Hz、75Hz,應該分別在第1個點、第51個點、第76個點上出現峰值,其它各點應該接近0。實際情況如何呢?我們來看看FFT的結果的模值如圖所示。

 

    從圖中可以看到,在第1點、第51點、和第76點附近有較大值。分別將這三個點附近的數據拿上來細看:

 

用Z = fft(S);

                       Y                                                 模值Z

第1個點:       512                                              512

第2個點:       5.2686e-16- 1.4128e-13i           1.4129e-13

第3個點:       2.1411e-15- 1.1718e-13i           1.1720e-13

 

第50個點:     1.8103e-12- 1.3394e-12i           2.2519e-12

第51個點:     2.9281e+02+ 2.4843e+02i         384

第52個點:     9.3193e-13- 2.0432e-12i           2.2457e-12

 

第75個點:     1.0239e-12+ 5.0058e-14i          1.0251e-12

第76個點:     -1.8505e+02- 5.1209e+01i        192.0000

第77個點:     -7.2171e-13- 2.2549e-13i          7.5612e-13

 

用Z =fft(S,N);

                     Y                                              模值Z

第1個點:    512.0000                                   512.0000

第2個點:    -2.6195e-14- 1.4162e-13i         1.4402e-13

第3個點:    -2.8586e-14- 1.1898e-13i         1.2237e-13

 

第50個點:  -6.2076e-13- 2.1713e-12i         2.2583e-12

第51個點:  3.3255e+02 - 1.9200e+02i        384.0000

第52個點:  -1.6707e-12- 1.5241e-12i         2.2614e-12

 

第75個點:  -2.2199e-13- 1.0076e-12i         1.0317e-12

第76個點:  3.4386e-12 + 1.9200e+02i        192.0000

第77個點:  -3.0263e-14+ 7.5609e-13i        7.5670e-13

 

很明顯,1點、51點、76點的值都比較大,它附近的點值都很小,可以認為是0,即在那些頻率點上的信號幅度為0。

 

接着,我們來計算各點的幅度值。由公式(1)可知,給定模值An,它對應的幅度為:An/(N/2)。對於n=1點的信號,是直流分量,幅度即為A1/N。因此,直流分量為:512/N=512/256=2;50Hz信號的幅度為:384/(N/2)=384/(256/2)=3;75Hz信號的幅度為192/(N/2)=192/(256/2)=1.5。可見,從頻譜分析出來的幅度是正確的。

 

然后再來計算相位信息。直流信號沒有相位可言,不用管它。先計算50Hz信號的相位,atan2(-192, 332.55)=-0.5236,結果是弧度,換算為角度就是180*(-0.5236)/pi=-30.0001。再計算75Hz信號的相位,atan2(192,3.4386e-12)=1.5708弧度,換算成角度就是180*1.5708/pi=90.0002。可見,相位也是對的。 

總結:假設采樣頻率為Fs,采樣點數為N,做FFT之后,某一點n(n從1開始)表示的頻率為:Fn=(n-1)*Fs/N;該點的模值除以N/2就是對應該頻率下的信號的幅度(對於直流信號是除以N)該點的相位即是對應該頻率下的信號的相位。相位的計算可用函數atan2(b,a)計算。atan2(b,a)是求坐標為(a,b)點的角度值,范圍從-pi到pi。要精確到xHz,則需要采樣長度為1/x秒的信號,並做FFT。要提高頻率分辨率,就需要增加采樣點數,這在一些實際的應用中是不現實的,需要在較短的時間內完成分析。解決這個問題的方法有頻率細分法,比較簡單的方法是采樣比較短時間的信號,然后在后面補充一定數量的0,使其長度達到需要的點數,再做FFT,這在一定程度上能夠提高頻率分辨力。具體的頻率細分法可參考相關文獻。

 

注意:

Z = fft(S,N); 

Z = fft(S);

計算出來的精確的Z值不一樣。

 

subplot(2,1,2),plot(abs(fftshift(fft(S)))),title('S fftshift');

 

 參考:

http://blog.sina.com.cn/s/blog_640029b301010xkv.html 

http://wenku.baidu.com/link?url=jv0SbOANX0zXbvwlZW5o0Hoi3sviFPrNb4FbDBjE0kZXQg7Dked3oMYMxFHWXr3btNkCefCjnivo-OiQr9rizPWV2Q5rcrYALm5-Ibkgapq

--------------------- 本文來自 arackethis 的CSDN 博客 ,全文地址請點擊:https://blog.csdn.net/arackethis/article/details/51478035?utm_source=copy 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM