本文是該系列讀書筆記的第二章數據預處理部分
import pandas as pd
import numpy as np
import os
import tarfile
from six.moves import urllib
獲取數據
download_root="https://raw.githubusercontent.com/ageron/handson-ml/master/"
house_path="datasets/housing"
housing_url=download_root+house_path+"/housing.tgz"
def fecthing_housing_data(housing_url=housing_url,house_path=house_path):
if not os.path.exists(house_path):
os.makedirs(house_path)
tgz_path=os.path.join(house_path,'housing.tgz')
urllib.request.urlretrieve(housing_url,tgz_path)
housing_tgz=tarfile.open(tgz_path)
housing_tgz.extractall(path=house_path)
housing_tgz.close()
def load_housing_data(house_path=house_path):
csv_path=os.path.join(house_path,"housing.csv")
return pd.read_csv(csv_path)
數據的初步分析,數據探索
# fecthing_housing_data() # 下載數據,解壓出csv文件
housing=load_housing_data()
housing.head()
|
longitude |
latitude |
housing_median_age |
total_rooms |
total_bedrooms |
population |
households |
median_income |
median_house_value |
ocean_proximity |
0 |
-122.23 |
37.88 |
41.0 |
880.0 |
129.0 |
322.0 |
126.0 |
8.3252 |
452600.0 |
NEAR BAY |
1 |
-122.22 |
37.86 |
21.0 |
7099.0 |
1106.0 |
2401.0 |
1138.0 |
8.3014 |
358500.0 |
NEAR BAY |
2 |
-122.24 |
37.85 |
52.0 |
1467.0 |
190.0 |
496.0 |
177.0 |
7.2574 |
352100.0 |
NEAR BAY |
3 |
-122.25 |
37.85 |
52.0 |
1274.0 |
235.0 |
558.0 |
219.0 |
5.6431 |
341300.0 |
NEAR BAY |
4 |
-122.25 |
37.85 |
52.0 |
1627.0 |
280.0 |
565.0 |
259.0 |
3.8462 |
342200.0 |
NEAR BAY |
housing.info()
# total_bedrooms 存在缺失值,
# 前9列為float格式,經度,維度,房齡中位數,總的房間數,卧室數目,人口,家庭數,收入中位數,房屋價格的中位數,
# 最后一列為離海距離為object類型
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20640 entries, 0 to 20639
Data columns (total 10 columns):
longitude 20640 non-null float64
latitude 20640 non-null float64
housing_median_age 20640 non-null float64
total_rooms 20640 non-null float64
total_bedrooms 20433 non-null float64
population 20640 non-null float64
households 20640 non-null float64
median_income 20640 non-null float64
median_house_value 20640 non-null float64
ocean_proximity 20640 non-null object
dtypes: float64(9), object(1)
memory usage: 1.6+ MB
# 需要查看ocean_proximity都包含哪些,
housing['ocean_proximity'].value_counts()
<1H OCEAN 9136
INLAND 6551
NEAR OCEAN 2658
NEAR BAY 2290
ISLAND 5
Name: ocean_proximity, dtype: int64
# 對數值類型的特征進行初步的統計
housing.describe()
|
longitude |
latitude |
housing_median_age |
total_rooms |
total_bedrooms |
population |
households |
median_income |
median_house_value |
count |
20640.000000 |
20640.000000 |
20640.000000 |
20640.000000 |
20433.000000 |
20640.000000 |
20640.000000 |
20640.000000 |
20640.000000 |
mean |
-119.569704 |
35.631861 |
28.639486 |
2635.763081 |
537.870553 |
1425.476744 |
499.539680 |
3.870671 |
206855.816909 |
std |
2.003532 |
2.135952 |
12.585558 |
2181.615252 |
421.385070 |
1132.462122 |
382.329753 |
1.899822 |
115395.615874 |
min |
-124.350000 |
32.540000 |
1.000000 |
2.000000 |
1.000000 |
3.000000 |
1.000000 |
0.499900 |
14999.000000 |
25% |
-121.800000 |
33.930000 |
18.000000 |
1447.750000 |
296.000000 |
787.000000 |
280.000000 |
2.563400 |
119600.000000 |
50% |
-118.490000 |
34.260000 |
29.000000 |
2127.000000 |
435.000000 |
1166.000000 |
409.000000 |
3.534800 |
179700.000000 |
75% |
-118.010000 |
37.710000 |
37.000000 |
3148.000000 |
647.000000 |
1725.000000 |
605.000000 |
4.743250 |
264725.000000 |
max |
-114.310000 |
41.950000 |
52.000000 |
39320.000000 |
6445.000000 |
35682.000000 |
6082.000000 |
15.000100 |
500001.000000 |
%matplotlib inline
import matplotlib.pyplot as plt
# 查看每個數值特征的分布,
housing.hist(bins=50,figsize=(20,15))
# plt.show()
array([[<matplotlib.axes._subplots.AxesSubplot object at 0x00000000179D4A20>,
<matplotlib.axes._subplots.AxesSubplot object at 0x0000000019A2A128>,
<matplotlib.axes._subplots.AxesSubplot object at 0x0000000019A557B8>],
[<matplotlib.axes._subplots.AxesSubplot object at 0x0000000019A7AE48>,
<matplotlib.axes._subplots.AxesSubplot object at 0x0000000019AAB518>,
<matplotlib.axes._subplots.AxesSubplot object at 0x0000000019AAB550>],
[<matplotlib.axes._subplots.AxesSubplot object at 0x0000000019B03278>,
<matplotlib.axes._subplots.AxesSubplot object at 0x0000000019B29908>,
<matplotlib.axes._subplots.AxesSubplot object at 0x0000000019B53F98>]],
dtype=object)

地理分布
housing.plot(kind="scatter", x="longitude", y="latitude")
<matplotlib.axes._subplots.AxesSubplot at 0x19bbfcc0>

housing.plot(kind="scatter", x="longitude", y="latitude",alpha=0.4)
# 標量,可選,默認值無,alpha混合值,介於0(透明)和1(不透明)之間
# 顯示高密度區域的散點圖,顏色越深,表示人口越密集,雖然我對加州的地理位置不是特別清楚
<matplotlib.axes._subplots.AxesSubplot at 0x1a705b70>

housing.plot(kind='scatter',x='longitude',y='latitude',alpha=0.4,
s=housing['population']/50,label='population',
c='median_house_value',cmap=plt.get_cmap("jet"),colorbar=True,
figsize=(9,6))
# import matplotlib
# plt.figure(figsize=(15,9))
# sc=plt.scatter(housing['longitude'],housing['latitude'],alpha=0.4,
# s=housing['population']/100,label='population',
# c=housing['median_house_value'],cmap=plt.get_cmap("jet"))
# plt.legend()
# matplotlib.rcParams["font.sans-serif"]=["SimHei"]
# matplotlib.rcParams['axes.unicode_minus'] = False
# matplotlib.rcParams['font.size'] =15
# plt.xlabel('經度')
# plt.ylabel('緯度')
# color_bar=plt.colorbar(sc)
# color_bar.set_label('meidan_house_value')
# plt.show()
#以上為使用plt的完整代碼,將坐標軸的內容以及添加colorbar,設置中文坐標軸標題
<matplotlib.axes._subplots.AxesSubplot at 0x19ffb390>

# 房價與位置和人口密度聯系密切,但是如何用數學的角度來描述幾個變量之間的關聯呢,可以使用標准相關系數standard correlation coefficient
# 常用的相關系數為皮爾遜相關系數
corr_matrix = housing.corr()
corr_matrix
|
longitude |
latitude |
housing_median_age |
total_rooms |
total_bedrooms |
population |
households |
median_income |
median_house_value |
longitude |
1.000000 |
-0.924664 |
-0.108197 |
0.044568 |
0.069608 |
0.099773 |
0.055310 |
-0.015176 |
-0.045967 |
latitude |
-0.924664 |
1.000000 |
0.011173 |
-0.036100 |
-0.066983 |
-0.108785 |
-0.071035 |
-0.079809 |
-0.144160 |
housing_median_age |
-0.108197 |
0.011173 |
1.000000 |
-0.361262 |
-0.320451 |
-0.296244 |
-0.302916 |
-0.119034 |
0.105623 |
total_rooms |
0.044568 |
-0.036100 |
-0.361262 |
1.000000 |
0.930380 |
0.857126 |
0.918484 |
0.198050 |
0.134153 |
total_bedrooms |
0.069608 |
-0.066983 |
-0.320451 |
0.930380 |
1.000000 |
0.877747 |
0.979728 |
-0.007723 |
0.049686 |
population |
0.099773 |
-0.108785 |
-0.296244 |
0.857126 |
0.877747 |
1.000000 |
0.907222 |
0.004834 |
-0.024650 |
households |
0.055310 |
-0.071035 |
-0.302916 |
0.918484 |
0.979728 |
0.907222 |
1.000000 |
0.013033 |
0.065843 |
median_income |
-0.015176 |
-0.079809 |
-0.119034 |
0.198050 |
-0.007723 |
0.004834 |
0.013033 |
1.000000 |
0.688075 |
median_house_value |
-0.045967 |
-0.144160 |
0.105623 |
0.134153 |
0.049686 |
-0.024650 |
0.065843 |
0.688075 |
1.000000 |
數據特征的相關性
import seaborn as sns
plt.Figure(figsize=(25,20))
hm=sns.heatmap(corr_matrix,cbar=True,annot=True,square=True,fmt='.2f',annot_kws={'size':9}, cmap="YlGnBu")
plt.show()

corr_matrix['median_house_value'].sort_values(ascending=False)
"""
相關系數的范圍是 -1 到 1。當接近 1 時,意味強正相關;
例如,當收入中位數增加時,房價中位數也會增加。
當相關系數接近 -1 時,意味強負相關;
緯度和房價中位數有輕微的負相關性(即,越往北,房價越可能降低)。
最后,相關系數接近 0,意味沒有線性相關性。
"""
# 使用pandas中的scatter_matrix 可以從另外一種角度分析多個變量之間的相關性
from pandas.plotting import scatter_matrix
attributes=['median_house_value',"median_income","total_bedrooms","housing_median_age"]
scatter_matrix(housing[attributes],figsize=(12,9))
# sns.pairplot(housing[['median_house_value',"median_income",]],height=5)
# 使用seaborn中的pariplot可以實現同樣的結果
housing.plot(kind="scatter",x='median_income',y='median_house_value',alpha=0.2)
<matplotlib.axes._subplots.AxesSubplot at 0x1e3df9e8>


創建新的特征
- 重點關注收入的中位數與房屋價值的中位數之間的關系,從上圖以及相關系數都可以得到兩者之間存在很明顯的正相關
- 可以清洗的看到向上的趨勢,並且數據點不是非常分散,
- 我們之前統計得到的最高房價位於5000000美元的水平線
- 從頻率分布直方圖hist可以看到housing_median_age ,meidan_house_value 具有長尾分布,可以嘗試對其進行log或者開根號等轉化
- 當然,不同項目的處理方法各不相同,但大體思路是相似的。
housing['rooms_per_household']=housing['total_rooms']/housing['households']
housing['bedrooms_per_room']= housing['total_bedrooms']/housing['total_rooms']
housing['population_per_household']=housing['population']/housing['households']
corr_matrix = housing.corr()
corr_matrix['median_house_value'].sort_values(ascending=False)
# """
# 新的特征房間中,卧室占比與房屋價值中位數有着更明顯的負相關性,比例越低,房價越高;
# 每家的房間數也比街區的總房間數的更有信息,很明顯,房屋越大,房價就越高
# """
median_house_value 1.000000
median_income 0.688075
rooms_per_household 0.151948
total_rooms 0.134153
housing_median_age 0.105623
households 0.065843
total_bedrooms 0.049686
population_per_household -0.023737
population -0.024650
longitude -0.045967
latitude -0.144160
bedrooms_per_room -0.255880
Name: median_house_value, dtype: float64
數據清洗, 創建處理流水線
- 缺失值處理
- 處理object文本數據類型
- 特征放縮
- 構建模型pepeline
- 以上幾個步驟我們在之前的博客中基本上都已經用過,這里作為讀書筆記不會再過多的詳細解釋
# total_bedrooms特征缺失值處理
"""
- 去掉含有缺失值的樣本,dropna()
- 去掉含有缺失值的特征 dropna(axis=1)
- 進行填充(中位數,平均值,0,插值填充) fillna(housing['total_bedrooms'].median()) 較為方便的使用pandas中的方法
"""
from sklearn.preprocessing import Imputer
imputer=Imputer(strategy='mean')
housing_num=housing.drop('ocean_proximity',axis=1)
imputer.fit(housing_num)
Imputer(axis=0, copy=True, missing_values='NaN', strategy='mean', verbose=0)
housing_num_trans=pd.DataFrame(imputer.transform(housing_num),columns=housing_num.columns)
housing_num_trans.info()
# 缺失值補齊,總覺得如果是缺失值處理的話,可以直接用pandas中的fillna會節省一點時間,在原始的數據上直接處理掉,后面也就不用再去擔心這個
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20640 entries, 0 to 20639
Data columns (total 12 columns):
longitude 20640 non-null float64
latitude 20640 non-null float64
housing_median_age 20640 non-null float64
total_rooms 20640 non-null float64
total_bedrooms 20640 non-null float64
population 20640 non-null float64
households 20640 non-null float64
median_income 20640 non-null float64
median_house_value 20640 non-null float64
rooms_per_household 20640 non-null float64
bedrooms_per_room 20640 non-null float64
population_per_household 20640 non-null float64
dtypes: float64(12)
memory usage: 1.9 MB
# 處理文本object類型數據
from sklearn.preprocessing import LabelEncoder
encoder= LabelEncoder()
house_cat=housing['ocean_proximity']
house_cat_encode=encoder.fit_transform(house_cat)
house_cat_encode
array([3, 3, 3, ..., 1, 1, 1], dtype=int64)
encoder.classes_
array(['<1H OCEAN', 'INLAND', 'ISLAND', 'NEAR BAY', 'NEAR OCEAN'],
dtype=object)
- 在之前博客中也提到類似的操作,改操作可能會將兩個臨近的值
- 比兩個疏遠的值更為相似,因此一般情況下,對與類標才會使用LabelEncoder,對於特征不會使用該方式對特征轉換
- 更為常用的操作是獨熱編碼,給每個分類創建一個二元屬性,比如當分類是INLAND,有則是1,沒有則是0
- skleanrn中提供了編碼器OneHotEncoder,類似與pandas中pd.get_dummies()
from sklearn.preprocessing import OneHotEncoder
# OneHotEncoder只能對數值型數據進行處理,只接受2D數組
encoder=OneHotEncoder()
housing_cat_1hot=encoder.fit_transform(house_cat_encode.reshape((-1,1)))
housing_cat_1hot
<20640x5 sparse matrix of type '<class 'numpy.float64'>'
with 20640 stored elements in Compressed Sparse Row format>
housing_cat_1hot.toarray()
array([[0., 0., 0., 1., 0.],
[0., 0., 0., 1., 0.],
[0., 0., 0., 1., 0.],
...,
[0., 1., 0., 0., 0.],
[0., 1., 0., 0., 0.],
[0., 1., 0., 0., 0.]])
# 使用LabelBinarizer 可以實現同樣的效果
from sklearn.preprocessing import LabelBinarizer
encoder=LabelBinarizer()
housing_cat_1hot=encoder.fit_transform(house_cat)
housing_cat_1hot
array([[0, 0, 0, 1, 0],
[0, 0, 0, 1, 0],
[0, 0, 0, 1, 0],
...,
[0, 1, 0, 0, 0],
[0, 1, 0, 0, 0],
[0, 1, 0, 0, 0]])
# 直接在原始的數據上使用pandas.get_dummies()是最簡單的方法
pd.get_dummies(housing[['ocean_proximity']]).head()
|
ocean_proximity_<1H OCEAN |
ocean_proximity_INLAND |
ocean_proximity_ISLAND |
ocean_proximity_NEAR BAY |
ocean_proximity_NEAR OCEAN |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
2 |
0 |
0 |
0 |
1 |
0 |
3 |
0 |
0 |
0 |
1 |
0 |
4 |
0 |
0 |
0 |
1 |
0 |
# 特征放縮 我們常用到的MinMaxScaler和StandandScaler兩種
# 一般會對不同范圍內的特征進行放縮,有助於優化算法收斂的速度(尤其是針對梯度提升的優化算法)
# 歸一化: 減去最小值,然后除以最大最小值的差
# 標准化: 減去平均值,然后除以方差,得到均值為0,方差為1的標准正態分布,受異常值影響比較小,決策樹和隨機森林不需要特征放縮
# 特征放縮一般針對訓練數據集進行transform_fit,對測試集數據進行transform
# 從划分數據集→pipeline
from sklearn.model_selection import train_test_split
housing=load_housing_data()
# train_set, test_set = train_test_split(housing, test_size=0.2, random_state=42) # 隨機采樣
from sklearn.model_selection import StratifiedShuffleSplit # 分層采樣
split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42)
housing["income_cat"] = np.ceil(housing["median_income"] / 1.5)
housing["income_cat"].where(housing["income_cat"] < 5, 5.0, inplace=True)
for train_index, test_index in split.split(housing, housing["income_cat"]): # 按照收入中位數進行分層采樣
strat_train_set = housing.loc[train_index]
strat_test_set = housing.loc[test_index]
housing = strat_train_set.copy() # 創建一個副本,以免損傷訓練集,
housing.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 16512 entries, 17606 to 15775
Data columns (total 11 columns):
longitude 16512 non-null float64
latitude 16512 non-null float64
housing_median_age 16512 non-null float64
total_rooms 16512 non-null float64
total_bedrooms 16354 non-null float64
population 16512 non-null float64
households 16512 non-null float64
median_income 16512 non-null float64
median_house_value 16512 non-null float64
ocean_proximity 16512 non-null object
income_cat 16512 non-null float64
dtypes: float64(10), object(1)
memory usage: 1.5+ MB
#轉化流水線
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
num_pipeline=Pipeline([('imputer',Imputer(strategy='median')),('std_scaler',StandardScaler())])
housing = strat_train_set.drop("median_house_value", axis=1)
housing_labels = strat_train_set["median_house_value"].copy()
housing_num=housing.drop('ocean_proximity',axis=1)
housing_num_tr = num_pipeline.fit_transform(housing_num)
housing_cat=housing['ocean_proximity']
housing_cat_tr= LabelBinarizer().fit_transform(housing_cat)
housing_train=np.c_[housing_num_tr,housing_cat_tr]
housing_train.shape
# 數字特征與categoriy 特征不能同時進行轉化,需要進行FeatureUnion
# 你給它一列轉換器(可以是所有的轉換器),當調用它的transform()方法,每個轉換器的transform()會被並行執行,
# 等待輸出,然后將輸出合並起來,並返回結果
# 當然也可以通過分批轉化,然后通過np將轉化好的數據集合並,本質上沒有什么區別,只不過對於測試集仍然需要transform,然后再合並成轉化好的測試集
(16512, 14)
import os
import sys
sys.path.append(os.getcwd())
from future_encoders import ColumnTransformer
from future_encoders import OneHotEncoder
num_attribs = list(housing_num)
cat_attribs = ["ocean_proximity"]
full_pipeline = ColumnTransformer([
("num", num_pipeline, num_attribs),
("cat", OneHotEncoder(), cat_attribs),
])
housing_prepared = full_pipeline.fit_transform(housing)
housing_prepared
array([[-1.15604281, 0.77194962, 0.74333089, ..., 0. ,
1. , 0. ],
[-1.17602483, 0.6596948 , -1.1653172 , ..., 0. ,
1. , 0. ],
[ 1.18684903, -1.34218285, 0.18664186, ..., 0. ,
1. , 1. ],
...,
[ 1.58648943, -0.72478134, -1.56295222, ..., 0. ,
1. , 0. ],
[ 0.78221312, -0.85106801, 0.18664186, ..., 0. ,
1. , 0. ],
[-1.43579109, 0.99645926, 1.85670895, ..., 0. ,
1. , 0. ]])
np.allclose(housing_prepared, housing_train)
True
后續內容已經放在github上,篇幅過大就只能把數據預處理的部分整理在這里,然后把后續的算法的實現部分整理在github中