前言概述
用裂項相消法可以求數列的通項公式\(a_n\),也可以求數列的前\(n\)項的和\(S_n\)。
常用公式
常用式:\(\cfrac{1}{n(n+1)}=\cfrac{1}{n}-\cfrac{1}{n+1}\);推廣式:\(\cfrac{1}{n(n+k)}=\cfrac{1}{k}(\cfrac{1}{n}-\cfrac{1}{n+k})\);
常用式:\(\cfrac{1}{\sqrt{n+1}+\sqrt{n}}=\sqrt{n+1}-\sqrt{n}\);推廣式:\(\cfrac{1}{\sqrt{n+k}+\sqrt{n}}=\cfrac{1}{k}(\sqrt{n+k}-\sqrt{n})\);
常用式:\(\cfrac{1}{4n^2-1}=\cfrac{1}{2}(\cfrac{1}{2n-1}-\cfrac{1}{2n+1})\);
常用式:\(ln(1+\cfrac{1}{n})=ln\cfrac{n+1}{n}=ln(n+1)-lnn\)。
不常用:\(\cfrac{a_{n+1}}{S_n\cdot S_{n+1}}=\cfrac{S_{n+1}-S_{n}}{S_n\cdot S_{n+1}}=\cfrac{1}{S_n}-\cfrac{1}{S_{n+1}}\)
不常用:\(\cfrac{2^n}{(2^n-1)(2^{n+1}-1)}=\cfrac{1}{2^n-1}-\cfrac{1}{2^{n+1}-1}\)
記憶方法
【案例1】\(\cfrac{2}{(n-1)(n+1)}=2\cdot \cfrac{1}{(n-1)(n+1)}=2\cdot \Box (\cfrac{1}{n-1}-\cfrac{1}{n+1})\),
那么小括號前面的系數到底該是多少才能使得原式保持恆等變形呢?
我們只需要做通分的工作,將
\(\cfrac{1}{n-1}-\cfrac{1}{n+1}=\cfrac{(n+1)-(n-1)}{(n-1)(n+1)}=\cfrac{2}{(n-1)(n+1)}\)
故\(\cfrac{1}{(n-1)(n+1)}=\cfrac{1}{2}(\cfrac{1}{n-1}-\cfrac{1}{n+1})\),
故上述\(\Box\)位置應該為\(\cfrac{1}{2}\),
即\(\cfrac{2}{(n-1)(n+1)}=2\cdot \cfrac{1}{2} (\cfrac{1}{n-1}-\cfrac{1}{n+1})=\cfrac{1}{n-1}-\cfrac{1}{n+1}\),
【案例2】\((\sqrt{n+1}+\sqrt{n})(\sqrt{n+1}-\sqrt{n})=1\),故\(\cfrac{1}{\sqrt{n+1}+\sqrt{n}}=\sqrt{n+1}-\sqrt{n}\)
關聯表示
①\(\cfrac{1}{n^2+2n}\)
②\(b_n=\cfrac{1}{a_n\cdot a_{n+1}}\)
③\(\cfrac{a_{n+1}}{S_n\cdot S_{n+1}}\)
書寫模式
如數列\(a_n=\cfrac{1}{n(n+2)}\),求其前\(n\)項和\(S_n\)。
分析:先裂項得到,\(a_n=\cfrac{1}{2}(\cfrac{1}{n}-\cfrac{1}{n+2})\),
則\(S_n=a_1+a_2+a_3+\cdots+a_n\)
則往下的求和書寫格式有以下兩種:
第一種書寫格式:橫向消項,容易出錯;
\(S_n=\cfrac{1}{2}[(1-\cfrac{1}{3})+(\cfrac{1}{2}-\cfrac{1}{4})+(\cfrac{1}{3}-\cfrac{1}{5})+\cdots+(\cfrac{1}{n-1}-\cfrac{1}{n+1})+(\cfrac{1}{n}-\cfrac{1}{n+2})]\)
\(=\cfrac{1}{2}(1+\cfrac{1}{2}-\cfrac{1}{n+1}-\cfrac{1}{n+2})=\cdots\)
第二種書寫格式:縱向消項,不易出錯,如圖所示;
先得到如下的表達式,
\(S_n=\cfrac{1}{2}[(1-\cfrac{1}{3})+(\cfrac{1}{2}-\cfrac{1}{4})+(\cfrac{1}{3}-\cfrac{1}{5})+\cdots+(\cfrac{1}{n-1}-\cfrac{1}{n+1})+(\cfrac{1}{n}-\cfrac{1}{n+2})]\)
然后如圖所示,將每一個小括號寫成兩列,
很明顯可以斜向消項,第一列剩余前兩項,第二列剩余后兩項,故結果為
\(S_n=\cfrac{1}{2}(1+\cfrac{1}{2}-\cfrac{1}{n+1}-\cfrac{1}{n+2})=\cdots\)
再給一個練習題,通過此練習題,更能體會縱向書寫的妙處。
\(a_n=\cfrac{1}{n(n+3)}\),求其前\(n\)項和\(S_n\)。
求通項公式
分析:兩邊同除以\(n(n+1)\),得到\(\cfrac{a_{n+1}}{n+1}=\cfrac{a_n}{n}+\cfrac{2}{n(n+1)}\),再用累加法,得到\(a_n=4n-2\);
典例剖析
問題:\(\cfrac{k\cdot 2^{k+1}}{(k+1)(k+2)}=\cfrac{2^{k+2}}{k+2}-\cfrac{2^{k+1}}{k+1}\)是如何變形得到的?
分析: 這樣的變形是為了利用數列\(\{\cfrac{2^{k+1}}{k+1}\}\)完成消項。
\(\cfrac{k\cdot 2^{k+1}}{(k+1)(k+2)}\)
\(=2^{k+1}\cdot\cfrac{k}{(k+1)(k+2)}\)
\(=2^{k+1}\cdot \cfrac{2(k+1)-(k+2)}{(k+1)(k+2)}\)
\(=2^{k+1}\cdot (\cfrac{2}{k+2}-\cfrac{1}{k+1})\)
\(=\cfrac{2^{k+2}}{k+2}-\cfrac{2^{k+1}}{k+1}\)
分析:先求得\(a_n=2^{2n-1}\),則\(b_n=1-2n\),
且數列\(\{\cfrac{1}{b_n\cdot b_{n+1}}\}\)的通項公式為\(\cfrac{1}{b_n\cdot b_{n+1}}=\cfrac{1}{2}(\cfrac{1}{2n-1}-\cfrac{1}{2n+1})\),
故\(T_n=\cdots=\cfrac{n}{2n+1}\)。
分析:必須先能認出其通項公式\(a_n=\cfrac{1}{1+2+3+\cdots+n}\),
從而\(a_n=\cfrac{1}{\cfrac{n(n+1)}{2}}=\cfrac{2}{n(n+1)}=2(\cfrac{1}{n}-\cfrac{1}{n+1})\),故有
\(S_n=a_1+a_2+\cdots+a_n\)
\(=2[(1-\cfrac{1}{2})+(\cfrac{1}{2}-\cfrac{1}{3})+(\cfrac{1}{3}-\cfrac{1}{4})+\cdots+(\cfrac{1}{n}-\cfrac{1}{n+1})]\)
\(=2(1-\cfrac{1}{n+1})=\cfrac{2n}{n+1}\)。
分析:由\(a_1+2d=3\)和\(4a_1+6d=10\),容易計算出\(a_n=n\),故\(S_n=\cfrac{n(n+1)}{2}\),
則有\(\cfrac{1}{S_n}=\cfrac{2}{n(n+1)}=2(\cfrac{1}{n}-\cfrac{1}{n+1})\),
故\(\sum\limits_{k=1}^n {\cfrac{1}{S_k}}\)
\(=2[(1-\cfrac{1}{2})+(\cfrac{1}{2}-\cfrac{1}{3})+\cdots +(\cfrac{1}{n}-\cfrac{1}{n+1})]\)
\(=2(1-\cfrac{1}{n+1})=\cfrac{2n}{n+1}\)。
分析:由新定義可知,\(\cfrac{n}{a_1+a_2+\cdots+a_n}=\cfrac{1}{2n+1}\),
則由上式得到,\(S_n=n(2n+1)\),又由\(a_n\)與\(S_n\)的關系可知,
當\(n\geqslant 2\)時,\(S_{n-1}=(n-1)[2(n-1)+1]\),則\(a_n=S_n-S_{n-1}=4n-1\);
再驗證\(n=1\)時,\(a_1=1(2\times 1+1)=3=4\times 1-1\),滿足上式,
故\(a_n=4n-1(n\in N^*)\),
則結合題目可知,故\(b_n=\cfrac{a_n+1}{4}=\cfrac{4n-1+1}{4}=n\),
則\(\cfrac{1}{b_1b_2}+\cfrac{1}{b_2b_3}+\cfrac{1}{b_3b_4}+\cdots+\cfrac{1}{b_{10}b_{11}}\)
\(=[(1-\cfrac{1}{2})+(\cfrac{1}{2}-\cfrac{1}{3})+\cdots+(\cfrac{1}{10}-\cfrac{1}{11})]=\cfrac{10}{11}\),
故選\(C\)。
(1)求數列\(\{a_n\}\)的通項公式。
分析:本題是利用\(a_n\)和\(S_n\)的關系解題,或者是利用“退一法”解題。
由題目可知,\(n\ge 1\),\(a_1+3a_2+\cdots+(2n-1)a_n=2n①\)得到,
當\(n\ge 2\),\(a_1+3a_2+\cdots+(2n-3)a_{n-1}=2(n-1)②\)
兩式相減得到
\(n\ge 2,(2n-1)a_n=2\),
從而得到\(a_n=\cfrac{2}{2n-1}(n\ge 2)\),
接下來驗證\(n=1\)是否滿足
當\(n=1\)時,\(a_1=2=\cfrac{2}{2\times 1-1}\),滿足上式,
故數列\(\{a_n\}\)的通項公式為\(a_n=\cfrac{2}{2n-1}(n\in N^*)\).
(2)求數列\(\{\cfrac{a_n}{2n+1}\}\)的前\(n\)項和\(S_n\)。
分析:結合第一問,數列\(\cfrac{a_n}{2n+1}=\cfrac{2}{(2n-1)(2n+1)}=\cfrac{1}{2n-1}-\cfrac{1}{2n+1}\)
故數列的前\(n\)項和\(S_n=(\cfrac{1}{2\times1-1}-\cfrac{1}{2\times 1+1})+(\cfrac{1}{2\times 2 -1}-\cfrac{1}{2\times 2+1})+\cdots+(\cfrac{1}{2n-1}-\cfrac{1}{2n+1})\)
\(=1-\cfrac{1}{2n+1}=\cfrac{2n}{2n+1}\)。
分析:由\(\sqrt{a_1}+\sqrt{a_2}+\sqrt{a_3}+\cdots+\sqrt{a_n}=n^2\),
故當\(n\ge 2\)時,\(\sqrt{a_1}+\sqrt{a_2}+\sqrt{a_3}+\cdots+\sqrt{a_{n-1}}=(n-1)^2\),
兩式相減,得到
當\(n\ge 2\)時,\(\sqrt{a_n}=n^2-(n-1)^2=2n-1\),即\(a_n=(2n-1)^2\),
驗證\(n=1\)時,也滿足上式。故通項公式為\(a_n=(2n-1)^2,n\in N^*\),
\(a_{n+1}=(2n+1)^2=4n^2+4n+1\),
則\(\cfrac{1}{a_{n+1}-1}=\cfrac{1}{4n(n+1)}=\cfrac{1}{4}(\cfrac{1}{n}-\cfrac{1}{n+1})\)
故\(T_n=\cfrac{1}{4}[(1-\cfrac{1}{2})+(\cfrac{1}{2}-\cfrac{1}{3})+\cdots+(\cfrac{1}{n}-\cfrac{1}{n+1})]\)
\(=\cfrac{1}{4}\cdot \cfrac{n}{n+1}=\cfrac{n}{4n+4}\)
對應練習
提示:\(d=2\),\(\cfrac{a_{n+1}}{S_n\cdot S_{n+1}}=\cfrac{S_{n+1}-S_{n}}{S_n\cdot S_{n+1}}=\cfrac{1}{S_n}-\cfrac{1}{S_{n+1}}\)
\(\cfrac{a_2}{S_1S_2}+\cfrac{a_3}{S_2S_3}+\cfrac{a_4}{S_3S_4}+\cdots+\cfrac{a_{n+1}}{S_nS_{n+1}}=1-\cfrac{1}{(n+1)^2}\);
提示:變形得到\((a_{n+2}-a_{n+1})-(a_{n+1}-a_n)=2\),即數列\(\{a_{n+1}-a_n\}\)為等差數列,再用累加法得到\(a_n=n(n+1)\),則\(\cfrac{1}{a_n}=\cfrac{1}{n}-\cfrac{1}{n+1}\),則\(\cfrac{1}{a_1}+\cfrac{1}{a_2}+\cdots +\cfrac{1}{a_{2017}}=1-\cfrac{1}{2018}\),
則\(2017(\cfrac{1}{a_1}+\cfrac{1}{a_2}+\cdots +\cfrac{1}{a_{2017}})=2017(1-\cfrac{1}{2018})=2017-\cfrac{2017}{2018}=2016+\cfrac{1}{2018}\),
故\([\cfrac{2017}{a_1}+\cfrac{2017}{a_2}+\cdots +\cfrac{2017}{a_{2017}}]=[2016+\cfrac{1}{2018} ]=2016\)。