拉格朗日對偶


拉格朗日對偶

 

對偶是最優化方法里的一種方法,它將一個最優化問題轉換成另外一個問題,二者是等價的。拉格朗日對偶是其中的典型例子。對於如下帶等式約束和不等式約束的優化問題:

                       

與拉格朗日乘數法類似,構造廣義拉格朗日函數:

 

必須滿足 的約束。

 

原問題為:

 

即先固定住x,調整拉格朗日乘子變量,讓函數L取極大值;然后控制變量x,讓目標函數取極小值。原問題與我們要優化的原始問題是等價的。

 

對偶問題為:

 

 

和原問題相反,這里是先控制變量x,讓函數L取極小值;然后控制拉格朗日乘子變量,讓函數取極大值。

 

一般情況下,原問題的最優解大於等於對偶問題的最優解,這稱為弱對偶。在某些情況下,原問題的最優解和對偶問題的最優解相等,這稱為強對偶。

 

強對偶成立的一種條件是Slater條件:一個凸優化問題如果存在一個候選x使得所有不等式約束都是嚴格滿足的,即對於所有的i都有g(x)<0,不等式不取等號,則強對偶成立,原問題與對偶問題等價。注意,Slater條件是強對偶成立的充分條件而非必要條件。

 

拉格朗日對偶在機器學習中的典型應用是支持向量機。

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM