~按位取反


~是按位取反運算符

這里先說一下二進制在內存的存儲:二進制數在內存中以補碼的形式存儲

另外,正數的原碼、補碼和反碼都相同

 

負數的反碼與原碼符號位相同,數值為取反;補碼是在反碼的基礎上加1

比如:

~9的計算步驟:

轉二進制:0 1001

計算補碼:0 1001

按位取反:1 0110

轉為原碼:1 0110

按位取反:1 1001   反碼

末位加一:1 1010   補碼

符號位為1是負數,即-10

規律:~x=-(x+1);

因此,t=~9(1001)並不能輸出6(0110),而是-10;

 

牛客網暑假訓練第七場A題:

鏈接:https://www.nowcoder.com/acm/contest/145/A
來源:牛客網

Minimum Cost Perfect Matching
時間限制:C/C++ 1秒,其他語言2秒
空間限制:C/C++ 262144K,其他語言524288K
Special Judge, 64bit IO Format: %lld

題目描述

You have a complete bipartite graph where each part contains exactly n nodes, numbered from 0 to n - 1 inclusive.

The weight of the edge connecting two vertices with numbers x and y is (bitwise AND).

Your task is to find a minimum cost perfect matching of the graph, i.e. each vertex on the left side matches with exactly one vertex on the right side and vice versa. The cost of a matching is the sum of cost of the edges in the matching.

denotes the bitwise AND operator. If you're not familiar with it, see {https://en.wikipedia.org/wiki/Bitwise_operation#AND}.

輸入描述:

The input contains a single integer n (1 ≤ n ≤ 5 * 10
5
).

輸出描述:

Output n space-separated integers, where the i-th integer denotes p
i
 (0 ≤ p
i
 ≤ n - 1, the number of the vertex in the right part that is matched with the vertex numbered i in the left part. All p
i
 should be distinct.

Your answer is correct if and only if it is a perfect matching of the graph with minimal cost. If there are multiple solutions, you may output any of them.
示例1

輸入

3

輸出

0 2 1
題意:給你一個n,讓你輸出一行與1~n-1 &起來 的值的和最小,如:0 2 1 (0&0+1&2+2&1=0
 

代碼:

#include<bits/stdc++.h>
using namespace std; typedef long long ll; typedef unsigned long long ull; #define mod 1000000007
const int N=5e+5; int a[N]; int main() { ios_base::sync_with_stdio(0); cin.tie(0); int n; cin>>n; memset(a,-1,sizeof(a)); for(int i=n-1;i>=0;i--) { int t=~i,k=0;//此時t是以補碼輸出的,是負數
     /*********************** 9 1001 取反 0110 & 1111 得: 0110 */cout<<t; while(1<<k<i)k++; cout<<(1<<k)-1; t=t&((1<<k)-1);cout<<t<<endl; if(a[i]==-1) a[i]=t,a[t]=i; } for(int i=0;i<n;i++) cout<<a[i]<<" "; cout<<endl; return 0; }

 

 

 

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM