from __future__ import division, print_function, absolute_import
import tflearn
import numpy as np
import math
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import tensorflow as tf
step_radians = 0.001
steps_of_history = 10
steps_in_future = 5
learning_rate = 0.003
def getData(x):
seq = []
next_val = []
for i in range(0, len(x) - steps_of_history - steps_in_future, steps_in_future):
seq.append(x[i: i + steps_of_history])
next_val.append(x[i + steps_of_history + steps_in_future -1])
seq = np.reshape(seq, [-1, steps_of_history, 1])
next_val = np.reshape(next_val, [-1, 1])
X = np.array(seq)
Y = np.array(next_val)
return X,Y
def myRNN(activator,optimizer):
tf.reset_default_graph()
# Network building
net = tflearn.input_data(shape=[None, steps_of_history, 1])
net = tflearn.lstm(net, 32, dropout=0.8,bias=True)
net = tflearn.fully_connected(net, 1, activation=activator)
net = tflearn.regression(net, optimizer=optimizer, loss='mean_square', learning_rate=learning_rate)
# Training Data
trainVal = np.sin(np.arange(0, 20*math.pi, step_radians))
trainX,trainY = getData(trainVal)
print(np.shape(trainX))
# Training
model = tflearn.DNN(net)
model.fit(trainX, trainY, n_epoch=10, validation_set=0.1, batch_size=128)
# Testing Data
testVal = np.sin(np.arange(20*math.pi, 24*math.pi, step_radians))
testX,testY = getData(testVal)
# Predict the future values
predictY = model.predict(testX)
print("---------TEST ERROR-----------")
expected = np.array(testY).flatten()
predicted = np.array(predictY).flatten()
error = sum(((expected - predicted) **2)/len(expected))
print(error)
# Plot and save figure
plotFig(testY, np.array(predictY).flatten(), error, activator+"_"+optimizer)
def plotFig(actual,predicted,error,filename):
# Plot the results
plt.figure(figsize=(20,4))
plt.suptitle('Prediction')
plt.title('History = '+str(steps_of_history)+', Future = '+str(steps_in_future)+', Error= '+str(error*100)+'%')
plt.plot(actual, 'r-', label='Expected')
plt.plot(predicted, 'g.', label='Predicted')
plt.legend()
plt.savefig(filename+'.png')
def main():
activators = ['linear', 'tanh', 'sigmoid', 'softmax', 'softplus', 'softsign', 'relu', 'relu6', 'leaky_relu', 'prelu', 'elu']
optimizers = ['sgd', 'rmsprop', 'adam', 'momentum', 'adagrad', 'ftrl', 'adadelta']
for activator in activators:
for optimizer in optimizers:
print ("Running for : "+ activator + " & " + optimizer)
myRNN(activator, optimizer)
break
break
main()
效果:

備注:steps_in_future = 5 僅僅是采樣數據用,每5個點采集一次數據,用於訓練,后續繪圖也是。修改為1,就沒有采樣過程了!steps_of_history = 10 使用歷史的10個數據點來預測。實驗表明,數據點越多,模型預測效果越好。為1的時候,效果比10的時候差些。
其他參考代碼:
# Simple example using recurrent neural network to predict time series values
from __future__ import division, print_function, absolute_import
import tflearn
from tflearn.layers.normalization import batch_normalization
import numpy as np
import math
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
step_radians = 0.01
steps_of_history = 200
steps_in_future = 1
index = 0
x = np.sin(np.arange(0, 20*math.pi, step_radians))
seq = []
next_val = []
for i in range(0, len(x) - steps_of_history, steps_in_future):
seq.append(x[i: i + steps_of_history])
next_val.append(x[i + steps_of_history])
seq = np.reshape(seq, [-1, steps_of_history, 1])
next_val = np.reshape(next_val, [-1, 1])
print(np.shape(seq))
trainX = np.array(seq)
trainY = np.array(next_val)
# Network building
net = tflearn.input_data(shape=[None, steps_of_history, 1])
net = tflearn.simple_rnn(net, n_units=32, return_seq=False)
net = tflearn.fully_connected(net, 1, activation='linear')
net = tflearn.regression(net, optimizer='sgd', loss='mean_square', learning_rate=0.1)
# Training
model = tflearn.DNN(net, clip_gradients=0.0, tensorboard_verbose=0)
model.fit(trainX, trainY, n_epoch=15, validation_set=0.1, batch_size=128)
# Testing
x = np.sin(np.arange(20*math.pi, 24*math.pi, step_radians))
seq = []
for i in range(0, len(x) - steps_of_history, steps_in_future):
seq.append(x[i: i + steps_of_history])
seq = np.reshape(seq, [-1, steps_of_history, 1])
testX = np.array(seq)
# Predict the future values
predictY = model.predict(testX)
print(predictY)
# Plot the results
plt.figure(figsize=(20,4))
plt.suptitle('Prediction')
plt.title('History='+str(steps_of_history)+', Future='+str(steps_in_future))
plt.plot(x, 'r-', label='Actual')
plt.plot(predictY, 'gx', label='Predicted')
plt.legend()
plt.savefig('sine.png')
效果:

參考:
https://github.com/tflearn/tflearn/issues/121
https://mourafiq.com/2016/05/15/predicting-sequences-using-rnn-in-tensorflow.html
https://blog.csdn.net/weiwei9363/article/details/78904383
摘錄tensorflow處理的做法:
RNN - 預測正弦函數
- 參考《TensorFlow實戰Google深度學習框架》。不使用TFLearn,只使用TensorFlow
- 完整代碼看這里
- 如果對RNN不理解,請看RNN遞歸神經網絡的直觀理解:基於TensorFlow的簡單RNN例子
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt %matplotlib inline
數據准備
# 訓練數據個數 training_examples = 10000 # 測試數據個數 testing_examples = 1000 # sin函數的采樣間隔 sample_gap = 0.01 # 每個訓練樣本的長度 timesteps = 20
def generate_data(seq): ''' 生成數據,seq是一序列的連續的sin的值 ''' X = [] y = [] # 用前 timesteps 個sin值,估計第 timesteps+1 個 # 因此, 輸入 X 是一段序列,輸出 y 是一個值 for i in range(len(seq) - timesteps -1): X.append(seq[i : i+timesteps]) y.append(seq[i+timesteps]) return np.array(X, dtype=np.float32), np.array(y, dtype=np.float32)
test_start = training_examples*sample_gap
test_end = test_start + testing_examples*sample_gap
train_x, train_y = generate_data( np.sin( np.linspace(0, test_start, training_examples) ) ) test_x, test_y = generate_data( np.sin( np.linspace(test_start, test_end, testing_examples) ) )
建立RNN模型
設置模型參數
lstm_size = 30 lstm_layers = 2 batch_size = 64
定義輸入輸出
x = tf.placeholder(tf.float32, [None, timesteps, 1], name='input_x') y_ = tf.placeholder(tf.float32, [None, 1], name='input_y') keep_prob = tf.placeholder(tf.float32, name='keep_prob')
建立LSTM層
# 有lstm_size個單元 lstm = tf.contrib.rnn.BasicLSTMCell(lstm_size) # 添加dropout drop = tf.contrib.rnn.DropoutWrapper(lstm, output_keep_prob=keep_prob) # 一層不夠,就多來幾層 def lstm_cell(): return tf.contrib.rnn.BasicLSTMCell(lstm_size) cell = tf.contrib.rnn.MultiRNNCell([ lstm_cell() for _ in range(lstm_layers)]) # 進行forward,得到隱層的輸出 outputs, final_state = tf.nn.dynamic_rnn(cell, x, dtype=tf.float32) # 在本問題中只關注最后一個時刻的輸出結果,該結果為下一個時刻的預測值 outputs = outputs[:,-1] # 定義輸出層, 輸出值[-1,1],因此激活函數用tanh predictions = tf.contrib.layers.fully_connected(outputs, 1, activation_fn=tf.tanh) # 定義損失函數 cost = tf.losses.mean_squared_error(y_, predictions) # 定義優化步驟 optimizer = tf.train.AdamOptimizer().minimize(cost)
訓練
# 獲取一個batch_size大小的數據 def get_batches(X, y, batch_size=64): for i in range(0, len(X), batch_size): begin_i = i end_i = i + batch_size if (i+batch_size) < len(X) else len(X) yield X[begin_i:end_i], y[begin_i:end_i]
epochs = 20 session = tf.Session() with session.as_default() as sess: # 初始化變量 tf.global_variables_initializer().run() iteration = 1 for e in range(epochs): for xs, ys in get_batches(train_x, train_y, batch_size): # xs[:,:,None] 增加一個維度,例如[64, 20] ==> [64, 20, 1],為了對應輸入 # 同理 ys[:,None] feed_dict = { x:xs[:,:,None], y_:ys[:,None], keep_prob:.5 } loss, _ = sess.run([cost, optimizer], feed_dict=feed_dict) if iteration % 100 == 0: print('Epochs:{}/{}'.format(e, epochs), 'Iteration:{}'.format(iteration), 'Train loss: {:.8f}'.format(loss)) iteration += 1
Epochs:0/20 Iteration:100 Train loss: 0.01009926
Epochs:1/20 Iteration:200 Train loss: 0.02012673
Epochs:1/20 Iteration:300 Train loss: 0.00237983
Epochs:2/20 Iteration:400 Train loss: 0.00029798
Epochs:3/20 Iteration:500 Train loss: 0.00283409
Epochs:3/20 Iteration:600 Train loss: 0.00115144
Epochs:4/20 Iteration:700 Train loss: 0.00130756
Epochs:5/20 Iteration:800 Train loss: 0.00029282
Epochs:5/20 Iteration:900 Train loss: 0.00045034
Epochs:6/20 Iteration:1000 Train loss: 0.00007531
Epochs:7/20 Iteration:1100 Train loss: 0.00189699
Epochs:7/20 Iteration:1200 Train loss: 0.00022669
Epochs:8/20 Iteration:1300 Train loss: 0.00065262
Epochs:8/20 Iteration:1400 Train loss: 0.00001342
Epochs:9/20 Iteration:1500 Train loss: 0.00037799
Epochs:10/20 Iteration:1600 Train loss: 0.00009412
Epochs:10/20 Iteration:1700 Train loss: 0.00110568
Epochs:11/20 Iteration:1800 Train loss: 0.00024895
Epochs:12/20 Iteration:1900 Train loss: 0.00287319
Epochs:12/20 Iteration:2000 Train loss: 0.00012025
Epochs:13/20 Iteration:2100 Train loss: 0.00353661
Epochs:14/20 Iteration:2200 Train loss: 0.00045697
Epochs:14/20 Iteration:2300 Train loss: 0.00103393
Epochs:15/20 Iteration:2400 Train loss: 0.00045038
Epochs:16/20 Iteration:2500 Train loss: 0.00022164
Epochs:16/20 Iteration:2600 Train loss: 0.00026206
Epochs:17/20 Iteration:2700 Train loss: 0.00279484
Epochs:17/20 Iteration:2800 Train loss: 0.00024887
Epochs:18/20 Iteration:2900 Train loss: 0.00263336
Epochs:19/20 Iteration:3000 Train loss: 0.00071482
Epochs:19/20 Iteration:3100 Train loss: 0.00026286
測試
with session.as_default() as sess: ## 測試結果 feed_dict = {x:test_x[:,:,None], keep_prob:1.0} results = sess.run(predictions, feed_dict=feed_dict) plt.plot(results,'r', label='predicted') plt.plot(test_y, 'g--', label='real sin') plt.legend() plt.show()

